IHC B

Measurement of the V_{ub} element of the CKM matrix

Run 2 Exclusive Analysis of the $B_s^0 \to K^- \mu^+ \nu_{\mu}$ Decay at LHCb

GDR Intensity Frontier Annual Workshop 08/11/2024

Alois Caillet (LPNHE)

frontier

V_{ub} element of the CKM matrix

Feynman Rule for the charged weak interaction at the $b \rightarrow u$ vertex:

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Plays a role in the **amplitude** of charged **weak** interaction transitions involving the *u* and *b* quarks.

 $\frac{-lg_w}{2\sqrt{2}}\gamma^{\mu}(1-\gamma^5)V_{ub}$

Abundance of b quark produced at LHC \Rightarrow LHCb good experiment to explore these transition

♦ This measurement can allow :

→ Constraining the **Unitarity Triangle** of the CKM matrix

→ Improving **precision** on the **least well known** CKM element

→ Probing New Physics

→ Helping to resolve **tension** between **exclusive** and **inclusive** measurement

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Motivation

♦ This measurement can allow :

→ Constraining the **Unitarity Triangle** of the CKM matrix

→ Improving **precision** on the **least well known** CKM element

→ Probing New Physics

→ Helping to resolve **tension** between **exclusive** and **inclusive** measurement

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Motivation

4

No ν reconstruction at LHC $\Rightarrow B_s^0$ mass obtained with a reconstruction technique using the **visible** decay products $K\mu$ and kinematic constraints

$$\left| V_{ub} \right|^2 \propto \frac{Br(B_s^0 \to K^- \mu^+ \nu_\mu)}{\int |FF| \, \mathrm{d}q^2} \times \frac{1}{\tau_{B_s}} \quad \checkmark$$

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Analysis strategy for the $B_s^0 \to K^- \mu^+ \nu_\mu$ decay

Described by form factors (FFs) as function of $q^2 = (p_{\mu} + p_{\nu})^2$ calculated with LCSR (small q^2) or LQCD (high q^2)

Fit on the B_s^0 mass to access to $Br(B_s^0 \to K^- \mu^+ \nu_\mu)$ and then $V_{\mu b}$

$|\mathbf{V}_{ub}|/|\mathbf{V}_{cb}|$ Last LHCb V_{ub} measurement

Run 1

2012 / pp collisions : $2fb^{-1}$ @ 7 TeV

Normalization decay : $B_s^0 \longrightarrow D_s^- \mu^+ \nu_{\mu}$

Analysis in **two bins** $q^2 \leq 7 \text{ GeV}^2/c^4$

 $|V_{ub}|/|V_{cb}|$ extract

Phys. Rev. Lett. 126, 081804

Changes from last LHCb V_{ub} measurement

Run 1

2012 / pp collisions : 2fb⁻¹ @ 7 TeV

Normalization decay : $B_s^0 \longrightarrow D_s^- \mu^+ \nu_{\mu}$

Analysis in **two bins** $q^2 \leq 7 \text{ GeV}^2/c^4$

 $|V_{ub}|/|V_{cb}|$ extract

Alois Caillet - Measurement of V_{ub} with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Run 2

2016-2017-2018 / pp collisions : ~ 5.67fb^{-1} @ 13 TeV

Normalization decay : $B^+ \longrightarrow J/\psi(\to \mu\mu) K^+$

Increase q^2 bin number to **8** – **10** bins

 $|V_{ub}|$ extract

Team

Marta Calvi¹, Davide Fazzini¹, Adlene Hicheur², Bassem Khanji³, Veronica Kirsebom¹, Maurizio Martinelli¹, Alessandro Minotti¹, Francesco Polci⁴, Pascal Vincent⁴

¹Università a degli Studi di Milano Bicocca & INFN ²UFRJ+freelance ³University of Syracuse ⁴Laboratoire de physique nucléaire et de hautes énergies

Theoretical and **experimental** contributions are nearly equal in the precision of the measurement

Experimental

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Challenges for the analysis

Run 1

Theoretical and **experimental** contributions are nearly equal in the precision of the measurement

\Rightarrow Different QCD models at low and high q^2 for $FFs \Rightarrow Discrepancy between the 2 regions$

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Challenges for the analysis

Challenges for the

* Theoretical and experimental contributions $\operatorname{ar}_{\mathsf{K}_{isMugn}}^{\underline{r} B_s^0 \to K^{*\pm}}$ nearly equal in the precision of the measurement PX*mu_PX>0.

\Rightarrow Different QCD models at low and high q^2 for $FFs \Rightarrow Discrepancy between the 2 regions$

\Rightarrow Big amount of **physical background** with $K\mu$ in the decay product \Rightarrow Delicate **bkg discrimination**

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

$$H_b \to H_c (\stackrel{B^0}{\to} K^{\pm}X) \mu^{\mp}X' / \stackrel{B^0}{B^{\pm}} \to c\bar{c}(\stackrel{\mp}{\to} \mu^{+}\mu^{-})K$$

$$B_s^0 \to K^{*\pm} \mu^{\mp} \nu_{\mu} B^{\ell} \stackrel{B^0}{\to} \stackrel{K^{*\pm}}{J/\psi} \stackrel{K^{*\pm}}{K^{*\pm}} (1430) \mu^{\mp} \nu_{K^{\pm}} / \pi^{\mp} B_s^0 \to K_2^{*}$$

10

Challenges for the an

★ Theoretical and experimental contributions $ar_{(A_{L} i SMUB)}^{\underline{r} B_{s}^{0} \rightarrow K^{*\pm}}$ nearly equal in the precision of the measurement PX*mu_PX>0.]

♦ Different QCD models at low and high q^2 for FFs ⇒ Discrepancy between the 2 regions

♦ Big amount of **physical background** with $K\mu$ in the decay product \Rightarrow Delicate **bkg discrimination**

 $\label{eq:solutions} \text{Two } \nu \text{ solutions are compatible with the} \\ \textbf{reconstruction technique}$

 $B_s^0 \to K^- \mu^+ \nu_\mu$ decay reconstruction at LHCb

★ Taking **PV to SV** direction as B_s^0 flight direction $\Rightarrow p_{\perp}(\nu_{\mu}) = -p_{\perp}(K\mu)$

- * 4-momentum conservation equations lead to a 2-fold ambiguity for the ν_{μ} kinematic
- Use corrected mass as discriminating varia

 B_{S}

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

 \rightarrow Use a regression algorithm to pick-up the best solution and evaluate q^2 JHEP02(2017)021

able :
$$M_{corr} = \sqrt{M_{K\mu}^2 + p_{\perp}^2} + p_{\perp}$$

- Normalisation mode $\Rightarrow B^{\pm} \longrightarrow J/\psi(\mu\mu)K^{\pm}$ **
- **Clean** and **large** sample : **
 - **Small** additional **statistical** uncertainty \Rightarrow
- Same number of tracks and similar topology to signal when one μ is neglected **
 - **Reduced systematic** uncertainty on efficiencies ratio \Rightarrow
- **Ratio** of B_s^0 to B^{\pm} production fractions precisely measured by LHCb Phys.Rev.D104,032005 ** → $f_s / f_d (13 \text{ TeV}) = 0.2539 \pm 0.0079$
- External systematic uncertainty from normalization will be slightly smaller than in Run 1 measurement **

Alois Caillet - Measurement of V_{ub} with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

$B_s^0 \to K^- \mu^+ \nu_\mu$ Normalization

→ 1.9% from $\mathscr{B}(B^{\pm} \longrightarrow J/\psi(\mu\mu)K^{\pm})$ and 3.1% from $f_s/f_d \implies 5\%$ which is four less than Run 1

 \Rightarrow Significance increased by $\sim 27\,\%\,$ wrt Run1 MVA selection

$B_s^0 \to K^- \mu^+ \nu_\mu$ signal fit

- Maximum-likelihood fit in HistFactory framework
- Simultaneous in q^2 bins and three data-taking years. Bins optimization not final.

Toy MonteCarlo with signal and background contributions (Last bin splitted in two sub-bins with equal statistics)

Conclusion & Outlook

V_{ub} measurement in $B_s^0 \to K^- \mu^+ \nu_\mu$ decays is being updated using **Run 2** data

Taking into account other contributions (Mis-ID, Combinatronic, ...)

◆ Baseline Form Factor scheme to be determined (FLAG24 average?)

V_{ub} measurement in $B^+ \to \rho^0(\pi^+\pi^-)\mu^+\nu_\mu$ also expected with Run 2 data

Alois Caillet - Measurement of $V_{\mu b}$ with $B_s^0 \to K^- \mu^+ \nu_{\mu}$

 \Rightarrow Expected **improvements** from **higher data sample** and enhanced analysis

Form Factors used for the Run 1 analysis

Uncertainty

Tracking Trigger Particle identification $\sigma(m_{\rm corr})$ Isolation Charged BDT Neutral BDT q^2 migration Efficiency Fit template

Total

Phys. Rev. Lett. 126, 081804

Relative systematic uncertainties on $\mathscr{B}(B_s^0 \to K^- \mu^+ \nu_{\mu}) / \mathscr{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})$

	All q^2	low q^2	high q^2
	2.0	2.0	2.0
	1.4	1.2	1.6
L	1.0	1.0	1.0
	0.5	0.5	0.5
	0.2	0.2	0.2
	0.6	0.6	0.6
	1.1	1.1	1.1
		2.0	2.0
	1.2	1.6	1.6
	$+2.3 \\ -2.9$	$+1.8 \\ -2.4$	$+3.0 \\ -3.4$
	$+4.0 \\ -4.3$	$+4.3 \\ -4.5$	$+5.0 \\ -5.3$

