

$R(D^*)_{\tau/e}$ measurement in Run 3

Ching-Hua Li

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France GDR - InF Annual Workshop 2024 - 7th November

Outline

Introduction

- LHCb detector & data flow
- Motivation of this analysis

Charged isolation MVA

- Challenge in semi-leptonic analysis
- Performance

Methodology

- Kinematic reconstruction
- Vertex isolation
- LFU determination

Status and outlook

Backup

Introduction – LHCb detector

Introduction – LHCb detector

Introduction – LHCb data flow

All numbers related to the dataflow are taken from the LHCb

Upgrade Trigger and Online TDR

Upgrade Computing Model TDR

- Data received by O(500) FPGAs and built into events in the event building (EB) farm servers
- In HLT1 trigger, perform partial reconstruction and selections. Reduce the rate by a factor of 30
- In buffer, real-time analysis and calibration are performed and used in next trigger
- In HLT2, perform full event reconstruction and exclusive selections.

Motivation of this analysis

In Run 3, we are benefited from

Better electron efficiency Improved Bremsstrahlung reconstruction

We have a lot of advantages measuring $R(D^*)_{\tau/e}$ compared to Run 1 & 2 $R(D^*)_{\tau/e} \equiv \frac{BR(B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \rightarrow D^{*-} e^+ \nu_e)}$

 \rightarrow It's the first time people test $\tau - e$ universality at LHCb !

Charged isolation MVA

Challenge in SL analysis

In semi-leptonic analysis, due to the presence of neutrino,
 there are broad overlapping distributions
 → Hard to discriminate signal from background candidates

B D

 D^0

v

K

π

Necessary to reduce the number of background tracks !

We save the ground state (D^0, lepton) and extra tracks and reconstruct the excited state (D^*) offline \rightarrow In Run 3, we can't store all the extra tracks due to bandwidth limitations

MVA study - performance

To identify tracks that likely originate from the B hadron decay, We train the model using **XGBoost**

Training features :

Geometric or kinematic properties of the extra track either by itself or relative to the signal candidate

Samples :

MC of 19 semileptonic decay channels with μ or e in the final state

ROC curve of isolation mva and the legacy methods

Remove ~ 40% background and only lose ~ 0.4% signal !

Methodology

Lepton Flavour Universality determination

We study Lepton Flavour Universality by measuring

$$\begin{split} R(D^*)_{\tau/e} &\equiv \frac{BR(B^0 \to D^{*-}\tau^+\nu_{\tau})}{BR(B^0 \to D^{*-}e^+\nu_e)} \text{ ,where } \tau^+ \to e^+\nu_e\bar{\nu_{\tau}} \\ &= \underbrace{\frac{N(B^0 \to D^{*-}\tau^+\nu_{\tau})}{N(B^0 \to D^{*-}e^+\nu_e)}}_{N(B^0 \to D^{*-}e^+\nu_e)} \times \underbrace{\frac{\epsilon(B^0 \to D^{*-}e^+\nu_e)}{\epsilon(B^0 \to D^{*-}\tau^+\nu_{\tau})}} \end{split}$$

Extract signal yields usingObtained efficiency from simulationmulti-dimensional fitterand calibrated by data study

Both decays have electrons in final state

 \rightarrow Measuring the ratio can cancel many sources of systematic error

Kinematic reconstruction

Due to the presence of **neutrinos in the decay**, we can only reconstruct B meson partially

In this study, we reconstruct B-meson kinematics with the following procedure

Correct reconstructed (p_{B^0}) $_z$ with true m_{B^0}

$$(p_{B^0})_z \approx \frac{m_{B^0,PDG}}{m_{B^0,reco}} \times (p_{B^0,reco})_z.$$
 flight direction
Derive $|\vec{p}_{B^0}|$ using the flight direction of B^0 obtained from
the positions of primary vertex and B^0 vertex Primary

 $|\vec{p}_{B^0}| = (p_{B^0})_z / \cos \alpha$, where α is angle between flight direction and the z-axis

B

vertex

vertex

Fitting variables

Due to the success in $R(D^*)_{\tau/\mu}$ analysis, we plan to use the same fitting variables

- $M_{missing}^2 = (p_{B^0} p_{D^*} p_e)^2$
- $q^2 = (p_{B^0} p_{D^*})^2$
- E_e^* : Electron energy in B rest frame which are derived from modified \vec{p}_{B^0}

Methodology - Vertex isolation

Dominated semi-leptonic background in Run 1 & 2 $R(D^*)_{\tau/\mu}$ analysis :

Higher excited background : $\overline{B} o D^{**} (o D^* n \pi) l v$, $(n \ge 1)$

In this analysis, the charge isolation mva is used to perform the vertex isolation – to remove the events which have multiple high mva score extra tracks

Double charmed background : $\overline{B} \rightarrow D^*H_c(\rightarrow l\nu X)X$

We plan to use the similar strategy to remove the background, and the preparation of simulation samples is in progress.

Status and outlook

Status

- Trigger selections have been tuned
- Isolation technique has been proven on data, with $B o D^* ev$ decays as first test case
- Offline selection roughly in place

Status

- Request of MC samples for the physics backgrounds is in progress
- Higher excited states can be suppressed by using the isolation MVA
- Removing combinatorial background from charm decays with s-weights

Next step

Fitter preparation

Templates from simulation

- Signal channels
- Double charm background
- Higher excited background

Data-driven templates

- Combinatorial background
- Fake lepton background

Further efficiencies study from simulated samples and real data

$$\frac{R(D^*)_{\tau/e}}{N(B^0 \to D^{*-} \tau^+ \nu_{\tau})} \times \underbrace{\frac{\epsilon(B^0 \to D^{*-} e^+ \nu_{e})}{\epsilon(B^0 \to D^{*-} e^+ \nu_{\tau})}}_{\epsilon(B^0 \to D^{*-} \tau^+ \nu_{\tau})}$$

Summary

- $R(D^*)_{\tau/e}$ measurement in Run 3 has started.

- The charged isolation MVA is implemented in working group and tested in both data and simulation.

- D^*e and $D^*\tau$ can be distinguished using the fitting variables from the $R(D^*)_{\tau/\mu}$ analysis.

- The preparation of the background simulation samples is in progress.

Backup

Type of tracks in LHCb

Bremstralung reconstruction

Resolution : $Variable^{Rec} - Variable^{Truth}$

Isolation MVA - training

Sample :

30 k signal tracks and **50~100 times more bkg tracks** for each SL decay channels (19 in total).

Optimise hyper parameters by maximising the area under the ROC curve

Sample

	Cocktail Notes	MagUp # of event in DIGI	MagDown # of event in DIGI	# of sig* in tuple
$B^+ \rightarrow D^{**} e v$	$D^*(2640)^0, D(2S)^0$ $D_1(2420)^0, D_2^*(2460)^0$	501336	548972 (0.07168)	71957
$B^+ \to D^{**} \tau v$	$D_1(H)^0, D_1(2420)^0 \ D_2^*(2460)^0$	617623	500681 (0.05021)	98235
$B^0 \to D^{**} e v$	$D^*(2640)^-, D(2S)^-$ $D^*_2(2460)^-, D_1(2420)^-$	504953	500680 (0.07108)	64754
$B^0 \to D^{**} \tau v$	$D_0^{*-}, D_1(H)^-$ $D_2^{*}(2460)^-, D_1(2420)^-$	501585	504926 (0.05514)	17684
With 2024 condition			B D	π
				D^0 K v π

Vertex isolation

Procedure :

- Choose the best $D^0 e$ combination in each event, then rank the mva score of the $B_{best}^{*-}\pi^+$ combinations.
- In a event, if the 2-th candidate has bdt>0.99, remove the event

Vertex isolation – performance of r-s sample

Efficiency [%]

	Vertex isolation	Highest mva	Offline selection	Xdigi (Generator cut eff [%])	# of candidates after offline sels
$B^+ \to D^* e v$	90.9	75.5	70.8	1011748 (0.17)	17124
$B^+ \to D^* \tau v$	91.9	76.6	72.3	1084565 (0.06)	38461
$B^+ \rightarrow D^{**} ev$	64.3	3.1	2.2	1050308 (0.07)	12698
$B^+ \to D^{**} \tau v$	67.4	3.9	2.8	1118304 (0.05)	8953
$B^0 \rightarrow D^{**} e v$	48.5	2.9	1.0	1005633 (0.07)	17901
$B^0 \to D^{**} \tau v$	88.8*	8.2	1.1	1006511 (0.06)	8953

Highest mva : Choose the candidate which has the highest bdt score

Right-side : Only select the right-side candidate (We will fit the right-side data sample to determine the signal yields) Offline selection : eID > 0.5, η_e < 4.5 and 140 < ΔM_{D^*} < 152 MeV