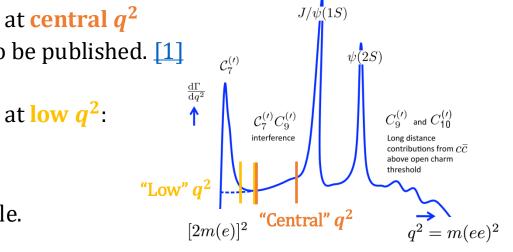

Angular Analysis of $B^0 \rightarrow K^{*0}e^+e^$ at low q^2 with the LHCb detector

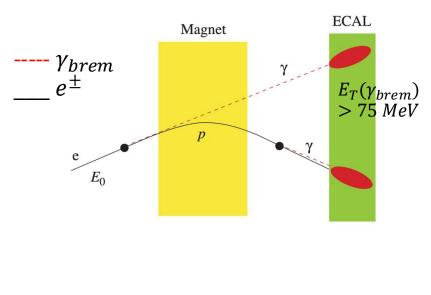

GDR-Inf Annual Workshop 2024, Cabourg

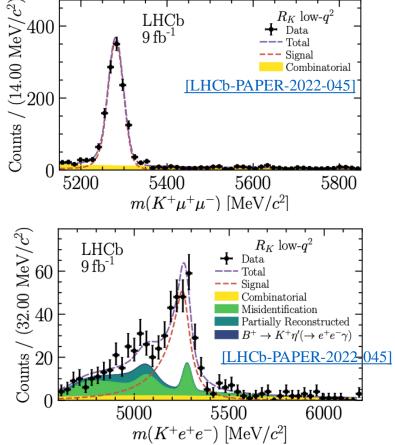
Marie Hartmann, Marie-Hélène Schune

Motivations

- $b \rightarrow s\ell^+\ell^-$ transitions:
 - Flavour Changing Neutral Current \rightarrow only occur at loop level in the SM.
 - Sensitive to possible New Physics mediators.
 - Discrepancies have been observed.
- $b \rightarrow se^+e^-$ transitions:
 - More experimentally challenging due to electrons.
 - But, provide complementary information → Test of Lepton Flavour Universality (LFU).
- Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ at **central** q^2 $q^2 \in [1.1, 6.0]$ GeV² at LHCb, soon to be published. [1]
- Angular analysis of $B^0 \to K^{*0}e^+e^-$ at low q^2 :
 - $q^2 \in [0.1, 1.1] \text{ GeV}^2$.
 - First one at LHCb.
 - Test of LFU for the C₉ observable.

Objectives

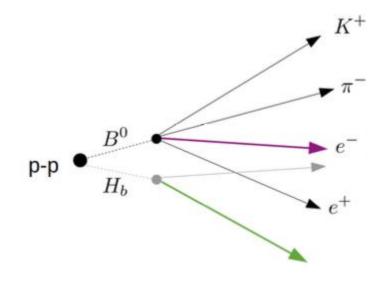

- Decay fully described by the three angles: $\cos(\theta_l), \cos(\theta_k), \phi$
- θ_{ℓ} e^+ B^0 ϕ K^+ π^-
- Differential signal decay-rate (S-wave neglected):

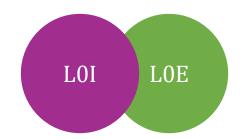

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\Omega} \Big|_{\mathsf{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \sin^2 \theta_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \cos 2\phi_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell$$

• Using Run1 (2011-2012) and Run2 (2015-2018) LHCb data: Fit the $\cos(\theta_l)$, $\cos(\theta_k)$, ϕ distributions to extract the angular observables F_L , S_3 , S_4 , S_5 , A_{FB} , S_6 , S_7 , S_8 , S_9 .

Electrons at LHCb

- Electrons are more experimentally challenging because of bremsstrahlung. Bremsstrahlung photons (γ_{brem}) can deteriorate the electron momentum measurement.
- A dedicated algorithm is used at LHCb to recover γ_{brem} energy deposits in the ECAL. Nevertheless, bremsstrahlung effects remain significant.





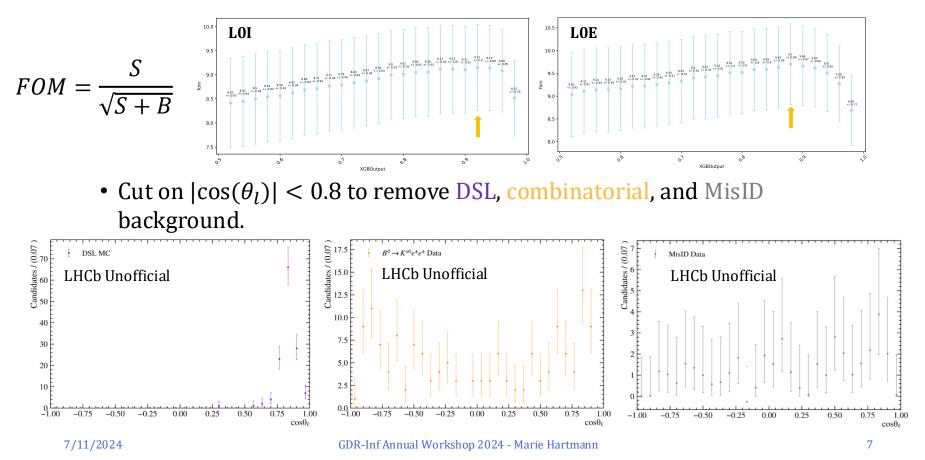
Trigger categories

• $B^0 \rightarrow K^{*0}e^+e^-$ candidates are in the two following trigger categories:

- LOE: At least one of the e^{\pm} of the decay fired the electron trigger.
- LOI: A particle which is not part of the $B^0 \rightarrow K^{*0}e^+e^-$ fired the trigger.

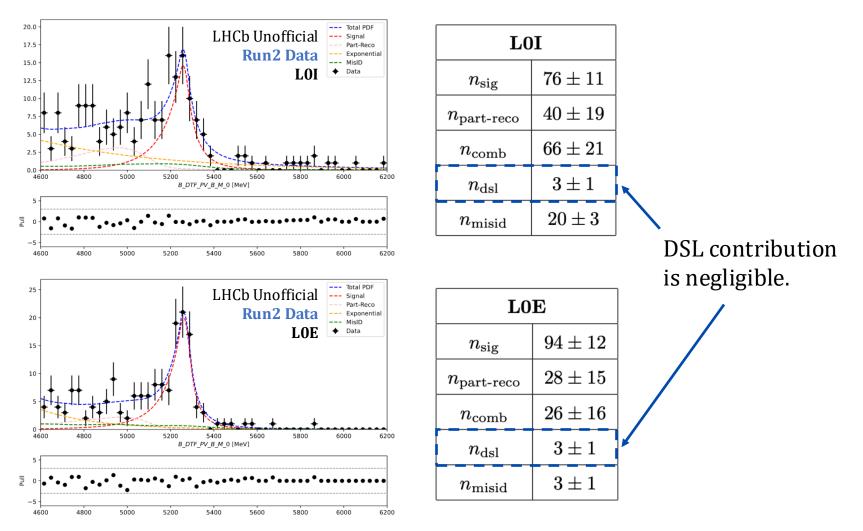
If an event is both LOI and LOE, it is put in the LOI trigger category.

Background contributions


- Combinatorial background:
 - \rightarrow Studied with $B^0 \rightarrow K^{*0} e^{\pm} e^{\pm}$ (SS) data
- Partially-reconstructed background:
 - $B^0 \to K^{**0} (\to K^+ \pi^- \pi^0) e^+ e^-, \ B^+ \to K^{**+} (\to K^+ \pi^- \pi^+) e^+ e^-$
 - \rightarrow Studied with MC
- Double semi-leptonic (DSL) background:
 - $B^0 \rightarrow D^- (\rightarrow K^{*0} (\rightarrow K^+ \pi^-) e^- \overline{\nu_e}) e^+ \nu_e$
 - \rightarrow Studied with MC and $B^0 \rightarrow K^{*0} e^{\pm} \mu^{\mp}$ Data
- Mis-identified (MisID) background:
 - $K^{\pm} \leftrightarrow e^{\pm}, \ \pi^{\pm} \leftrightarrow e^{\pm}$

 \rightarrow Studied with data computed with the Pass-and-Fail method.

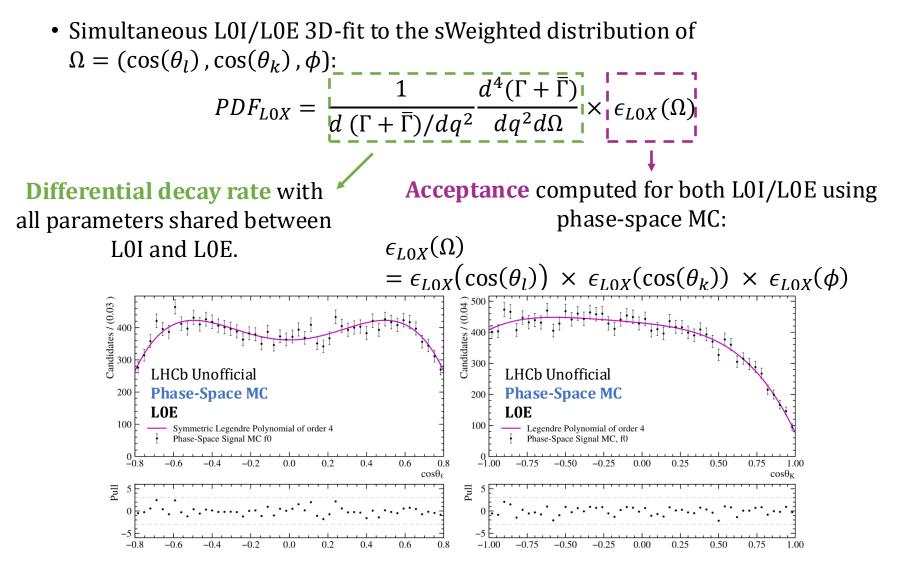
[LHCb-PAPER-2022-045]


Background contributions

- Additional selection:
 - BDT was trained to remove both partially reconstructed and combinatorial backgrounds. Cut on the output was optimised with a figure of merit for both L0I/L0E.

Mass fit

• Mass fit using Run2 data, in the LOI and LOE trigger categories:


sPlot technique [2]

- The mass fit is well controlled, but it is challenging to correctly model the angular distribution of the different backgrounds.
- Use the sPlot technique on the mass fit to extract the signal angular distribution.
 - sPlot works only if $m(K^+\pi^-e^+e^-)$ is uncorrelated with the three angles $\cos(\theta_l)$, $\cos(\theta_k)$, ϕ , for all the components of the mass fit. Because of bremsstrahlung, correlation could be expected between $m(K^+\pi^-e^+e^-)$ and $\cos(\theta_l)$.

 \rightarrow After tests, $m(K^+\pi^-e^+e^-)$ and $\cos(\theta_l)$ are considered uncorrelated for all the components of the mass fit.

• The sWeights are computed separately for the LOI and LOE trigger categories.

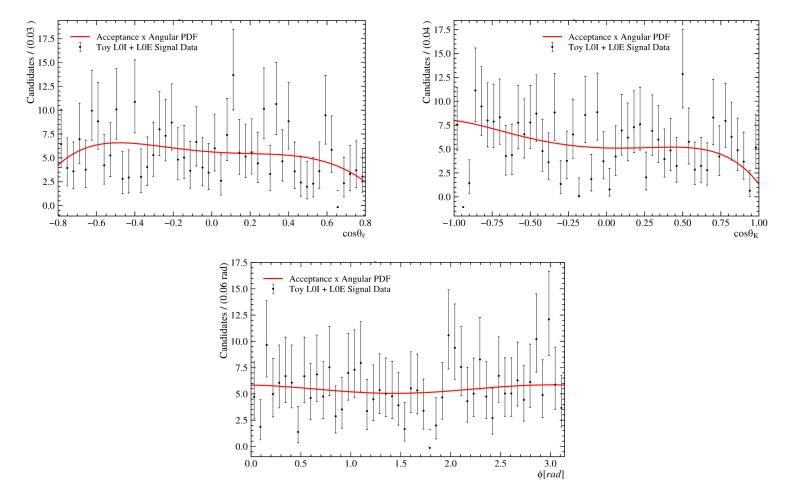
Angular model

- Pseudo data-sets:
 - Signal: generated with

$$\frac{1}{d\left(\Gamma+\overline{\Gamma}\right)/dq^2}\frac{d^4(\Gamma+\overline{\Gamma})}{dq^2d\Omega} \times \epsilon_{L0X}(\Omega)$$

• Combinatorial: generated with

 $\mathrm{pdf}_{m(K^+\pi^-e^+e^-)} \times \mathrm{pdf}_{\cos(\theta_l)} \times \mathrm{pdf}_{\cos(\theta_k)} \times \mathrm{pdf}_{\phi}$, where the 1D pdfs are extracted from fits to $B^0 \to K^{*0}e^{\pm}e^{\pm}$ data


- Partially-reconstructed: bootstraped from MC
- sPlot and angular fit tested on pseudo-data sets with expected yields:
 - $\sim 50\%$ convergence rate
 - \rightarrow Not enough statistics to fit all 8 angular observables at the same time.

- Instead, extract all the angular observables from 5 different angular fits with 5 different angular folding [LHCb-PAPER-2020-041]:
 - From 8 to 3/4 angular observable per fit
 - No loss in sensitivity

Fold Number	Angular Fold	Angular Observable	Fold Number	Angular Fold	Angular Observable
0	$\Big\{ \phi + \pi ext{ for } \phi < 0$	F_L, S_3, A_{FB} , and S_9	3	$\begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases}$	$F_L, S_3, \text{ and } S_7$
1	$\begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{\ell} > \pi/2\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2 \end{cases}$	$F_L, S_3, ext{ and } S_4$			
2	$\begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases}$	$F_L, S_3, ext{ and } S_5$	4	$\begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_K \to \pi - \theta_K & \text{for } \theta_\ell > \pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2. \end{cases}$	$F_L, S_3, ext{ and } S_8$

- The sPlot and angular fits are tested on pseudo-data with expected yields:
 - Average convergence rate for each fold ~ 99%.
 - Pulls are well-centred at 0 and width compatible with 1.

• Angular fit with folding n°0 on a pseudo-data experiment :

• First estimation of the sensitivity:

Low q^2				
Angular observable	SM value	Sensitivity		
F_L	0.351	0.053		
S_3	0.014	0.068		
S_4	0.116	0.091		
S_5	0.291	0.068		
A_{FB}	-0.109	0.070		
S_7	-0.024	0.071		
S_8	-0.003	0.091		
S_9	-0.001	0.066		

Central q^2 (from LHCb $B^0 \to K^{*0} e^+ e^-$				
Angular Analysis at Central q^2 [1]				
Angular observable	SM value	Sensitivity		
F_L	0.771	0.045		
S_3	-0.015	0.043		
S_4	-0.157	0.067		
S_5	-0.215	0.059		
A_{FB}	0.028	0.047		
S_7	0.0	0.058		
S_8	0.0	0.070		
S_9	0.0	0.044		

• Correlation matrix will be computed using a bootstrapping technique. [LHCb-PAPER-2020-041]

Conclusion

- Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ at low $q^2 \in [0.1, 1.1]$ GeV² with full Run1 and Run2 LHCb data with ~ 275 signal events.
- Will provide complementary information to the $b \rightarrow s\mu\mu$ angular analyses on the C_9 observable.
- Fit strategy in place and validated by pseudo data sets.

Low q^2					
Angular observable	SM value	Sensitivity			
F_L	0.351	0.053			
S_3	0.014	0.068			
S_4	0.116	0.091			
S_5	0.291	0.068			
A_{FB}	-0.109	0.070			
S_7	-0.024	0.071			
S_8	-0.003	0.091			
S_9	-0.001	0.066			

- Correlation matrix computation and MisID implementation on-going.
- Soon to start with the systematic studies.

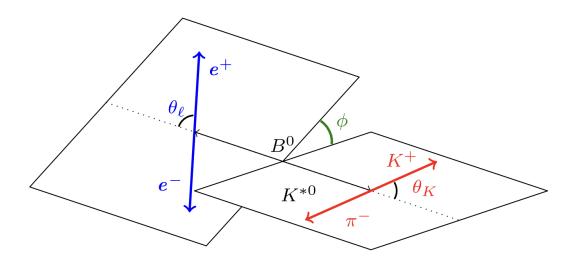
Conclusion

- Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ at low $q^2 \in [0.1, 1.1]$ GeV² with full Run1 and Run2 LHCb data with ~ 275 signal events.
- Will provide complementary information to the $b \rightarrow s\mu\mu$ angular analyses on the C_9 observable.
- Fit strategy in place and validated by pseudo data sets.

Low q^2				
Angular observable	SM value	Sensitivity		
F_L	0.351	0.053		
S_3	0.014	0.068		
S_4	0.116	0.091		
S_5	0.291	0.068		
A_{FB}	-0.109	0.070		
S_7	-0.024	0.071		
S_8	-0.003	0.091		
S_9	-0.001	0.066		

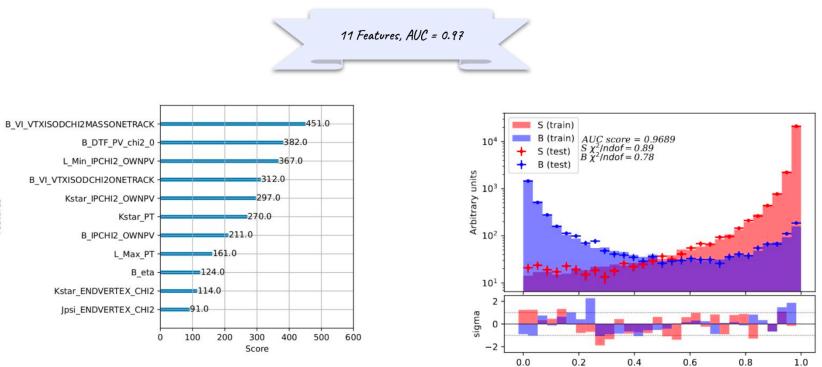
- Correlation matrix computation and MisID implementation on-going.
- Soon to start with the systematic studies.

Thank you for your attention!


Bibliography

- [1] First angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ decay at the central q^2 , ICHEP 2024, Rafael Silva Coutinho.
- [LHCb-PAPER-2022-045]: Measurement of lepton universality parameters in $B^+ \rightarrow K^+ \ell^+ \ell^-$ and $B^0 \rightarrow K^{*0} \ell^+ \ell^-$ decays, LHCb Collaboration.
- [2] sPlot: a statistical tool to unfold data distributions, M. Pivk, and F.R. Le Diberder.
- [LHCb-PAPER-2020-041]: Angular Analysis of the $B^+ \rightarrow K^{*+} \mu^+ \mu^-$, LHCb Collaboration.

Back-up slides


Angular Distribution

- Angle definition
 - θ_l : angle between the direction of the e^+ in the dielectron rest frame and the direction of the dielectron of the B^0 rest frame.
 - θ_k : angle between the direction of K^+ in the K^{*0} rest frame and the direction of the K^{*0} in the B^0 rest frame.
 - ϕ : angle between the planes containing $e^+ e^-$ and the plane containing $K^+ \pi^-$

BDT

- Variables to train the BDT:
 - Standard kinematic variables, topology variables, and isolation variables

BDT Output

FOM details

• FOM computed in a tight mass window (5000-5400 MeV):

$$FOM^{i} = \frac{S^{i}}{\sqrt{S^{i} + B^{i}}}$$

• Signal yield:

$$S^{i} = N^{i}_{data J/\psi} \times \frac{BF(B^{0} \to K^{*0}e^{+}e^{-})_{low/central} \times \epsilon^{i}_{MC low/central q2}}{BF(B^{0} \to K^{*0}J/\psi(\to e^{+}e^{-})) \times \epsilon^{i}_{MC J/\psi}}$$

 $N_{data J/\psi}^{i}$ = number of events in data with B_DTF_PVandJpsi_B_M_0 \in [5200; 5360] MeV (tight window)

 Background yield: Extracted from low/central mass fit. Mass fit includes one Comb+DSL component (exponential), and a part-reco component (RooKeysPdf).

DSL Yield

•
$$C_{dsl} = \frac{B(B^0 \to D^-(\to K^{*0}e^-\nu_e)e^+\nu_e) \times \epsilon(B^0 \to D^-(\to K^{*0}e^-\nu_e)e^+\nu_e)}{\int_{q_{true\,min}}^{q_{true\,max}^2} \frac{dB(B^0 \to K^{*0}e^+e^-)}{dq^2} dq^2 \times \epsilon(B^0 \to K^{*0}e^+e^-)(q_{true\,min}^2,q_{true\,max}^2)}$$

•
$$n_{dsl} = n_{sig}^{fit} \times C_{dsl}$$
, $n_{comb} = n_{comb+dsl}^{fit} - n_{dsl}$

Angular folds and pdfs

Folding 0: The following angular fold is performed to be sensitive to the observables F_L , S_3 , A_{FB} , and S_9 :

$$F_0: \left\{ \phi + \pi \quad \text{for } \phi < 0 \right. \tag{1}$$

This leads to the following differential decay rate:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\Omega}\Big|_{F_0} = \frac{9}{16\pi} \Big[\frac{3}{4}(1 - F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1 - F_L)\sin^2\theta_K\cos 2\theta_\ell + \frac{1}{4}(1 - F_L)\sin^2\theta_K\cos 2\theta_\ell + F_L\cos^2\theta_K\sin^2\theta_\ell\cos 2\phi + \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\cos 2\theta_\ell + S_9\sin^2\theta_K\sin^2\theta_\ell\sin 2\phi\Big]$$
(2)

Folding 1: The following angular fold is performed to be sensitive to the observables F_L , S_3 , and S_4 :

$$F_1: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_\ell > \pi/2\\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2 \end{cases}$$
(3)

This leads to the following differential decay rate:

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\Omega}\Big|_{F_1} = \frac{9}{8\pi} \Big[\frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_\ell - F_L\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi + S_4\sin2\theta_K\sin2\theta_\ell\cos2\phi + S_4\sin2\theta_\ell\cos\phi\Big]$$
(4)

Angular folds and pdfs

Folding 2: The following angular fold is performed to be sensitive to the observables F_L , S_3 , and S_5 :

$$F_2:\begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$
(5)

This leads to the following differential decay rate:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\Omega} \Big|_{F_2} = \frac{9}{8\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \varphi \Big]$$

$$(6)$$

Folding 3: The following angular fold is performed to be sensitive to the observables F_L , S_3 , and S_7 :

$$F_3: \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$
(7)

This leads to the following differential decay rate:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\Omega} \Big|_{F_3} = \frac{9}{8\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_7 \sin 2\theta_K \sin 2\theta_\ell \sin 2\phi_\ell \cos 2\phi + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \Big]$$

$$(8)$$

Angular folds and pdfs

Folding 4: The following angular fold is performed to be sensitive to the observables F_L , S_3 , and S_8 :

$$F_4: \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_K \to \pi - \theta_K & \text{for } \theta_\ell > \pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2. \end{cases}$$
(9)

This leads to the following differential decay rate:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\Omega} \Big|_{F_4} = \frac{9}{8\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin 2\theta_\ell \sin \phi \Big]$$
(10)