

Measurement of $B^0 \rightarrow \rho^0 \gamma$ branching fraction at LHCb

Olivier Deschamps¹, Chandiprasad Kar¹, Lais Soares Lavra², Régis Lefèvre¹

1 LPC, Clermont-Ferrand

2 University of Edinburgh

07 Nov, 2024

GDR-InF annual workshop 2024, Cabourg, France

Outline

- Motivation
- Previous measurements
- Analysis overview
- Charge and neutral PID
- MC reweighting
- Multivariate analysis
- Background estimations
- Fit validation
- Conclusions

Motivation

likelihood fit to data

- Search for NP using $b \rightarrow d\gamma$ transition
- Measure branching fraction of $B^0 \to \rho^0 \gamma$ using $B^0 \to K^{*0} \gamma$ as reference channel
 - Well observed channel with large statistics
 - Most of the systematics cancels out in the ratio
 - Allow to test the SM consistency

$$\frac{\mathscr{B}(B^0 \to \rho^0 \gamma)}{\mathscr{B}(B^0 \to K^{*0} \gamma)} \propto \left| \frac{V_{td}}{V_{ts}} \right|^2$$

• Experimentally $\frac{\mathscr{B}(B^0 \to \rho^0 \gamma)}{\mathscr{B}(B^0 \to K^{*0} \gamma)} = \mathscr{B}(K^{*0} \to K^+ \pi^-) \frac{N_{\rho^0 \gamma}}{N_{K^{*0} \gamma}} \frac{\epsilon^{K^{*0} \gamma}}{\epsilon^{\rho^0 \gamma}} \qquad \text{Unbinned maximum}$

- In the ρ^0 region defined as $m_{\pi\pi} \in (630, \ 920)$ MeV/ c^2 (similar to Babar and Belle)
- First measurement by LHCb using Run 1 + 2 data (9 fb^{-1})

- First studied in Belle [PRL 101, 111801] and Babar [PRD 78, 112001]
- Recent analysis based on Belle (711 fb⁻¹) + Belle II (362 fb⁻¹) data
- Measured branching fraction of $B^0 \to \rho^0 \gamma$ and it's isospin companion $B^+ \to \rho^+ \gamma$
- In addition to that, isospin asymmetry $A_I(B\to\rho\gamma)$ and CP asymmetry $A_{CP}(B^+\to\rho^+\gamma)$

LHCb detector

<u>JINST 3(2008) S08005</u>

- Accelerator: LHC
- Forward-looking spectrometer for b and c meson studies
- Periods: 2011-12 and 2015-18
- Acceptance: $2 < \eta < 5$
- All species of B hadrons
- $\sigma(b\bar{b})_{7\ TeV} = 252\ \mu b$
- $\sigma(b\bar{b})_{13\ TeV} = 590\ \mu b$

- Combinatorial backgrounds are suppressed using multivariate classifier
- Peaking backgrounds are controlled by charged and neutral PID criteria
- Blind analysis: to keep the analysis unbiased, the data on the signal mass region is not seen until the full strategy is defined
- All the validations are performed using $B^0 \rightarrow K^{*0}\gamma$ control channel

Charged PID

- Charged particle identification is important to control the mis-identified backgrounds in the signal region
- For particle identification, LHCb uses two RICH systems, calorimeters and muon chambers
- PID informations are combined in a multivariate classifier based on neural network
- PID performance are checked using high statistics samples in data: $K_S^0 \to \pi^+ \pi^-$, $\Lambda \to p\pi^-$, $D^{*+} \to D^0(K^-\pi^+)\pi^+$
- In this analysis, PID optimisation is performed by maximising the signal significance
 - In this optimisation, the backgrounds are estimated from different possible misidentified backgrounds like $B^0 \to K^+ \pi^- \gamma$, $\Lambda_b^0 \to p K^- \gamma$ and $B_s^0 \to K^+ K^- \gamma$

$$\begin{array}{c|c} B^{0} \to K^{*0} \gamma & & B^{0} \to \rho^{0} \gamma \\ \hline \epsilon^{PID}(K\pi \to K\pi) & \sim 90 \% \\ \epsilon^{PID}(KK \to K\pi(\pi K)) & \sim 4 \% \\ \epsilon^{PID}(pK \to K\pi) & < 0.5 \% \end{array} \qquad \left| \begin{array}{c} B^{0} \to \rho^{0} \gamma & & \\ \hline \epsilon^{PID}(\pi\pi \to \pi\pi) & \sim 75 \% \\ \epsilon^{PID}(K\pi(\pi K) \to \pi\pi) & \sim 0.5 \% \\ \epsilon^{PID}(Kp(pK) \to \pi\pi) & < 0.01 \% \\ \epsilon^{PID}(KK \to \pi\pi) & < 0.01 \% \end{array} \right|$$

9

Neutral PID

- Neutral PID algorithm are based on multivariate classifiers using sub-detector information from calorimeter system
 - Three different Neural Network are trained to separate between photon/hadron, photon/electron and photon/ π^0 separation
- Calibration samples: $B^0 \to K^*(K^+\pi^-)\gamma$, $D^{*+} \to D^0(K^-\pi^+\pi^0)\pi^+$
- For what concerns the photon/ π^0 separation, a cut at 0.6 gives 95% efficiency for $B^0 \to K^* \gamma$ and 50% for $D^0 \to K^- \pi^+ \pi^0$

- Charmless $B^0 \rightarrow \pi^+ \pi^- \pi^0$ decay is the most dangerous background
 - Dominant intermediate states $B^0 \to \rho^{\pm} (\to \pi^{\pm} \pi^0) \pi^{\mp}$ are removed by the anti $\widehat{\underline{g}}_{h}^{\text{Background}}$ $(m_{h^{\pm}(\gamma \to \pi^0)} > 2000 \text{ MeV}/c^2)$
 - Left with $B^0 \rightarrow \rho^0 \pi^0$ which has a poorly measured branching fraction: $(2.0 \pm 0.5)_4 \times 10^{-6}$
- In the analysis, the photon/ π^0 neutral PID cut is optimised after BDT by minimising the signal relative uncertainty (taking into account BF unc.)

Signal

-0.5

0.5

MC reweighting

- $B^{0} \rightarrow K^{0} \chi 2017$ $B^{0} \rightarrow K^{0} \chi 200$
- Comparison between ${}^{\circ.04}_{\circ.5}$ Weighted $B^0 \rightarrow K^{*0}\gamma$ and MC shows disagreement in different decay kinematics (after preselection and PID ${}^{\circ.03}_{\circ.04}$) which will affect the MVA training

nTracks

- A separate multivariate classifier is trained to correct the simulated sample: Gradient Boosted (GB) Reweighter $B^0 \rightarrow K^0 \gamma 2017$
- List of input variables used in the GB Reweighted data Isolation of B 0.06
- After correction the agreement in the different variables is satisfactory
- The same weights are applied on the $B^0 \to \rho^0 \gamma \,\mathrm{MC}\,\mathrm{sam}_{p}^{\mathrm{max}}$

- BDT training
- To reduce the combinatorial background, Boosted Decision Trees (BDT) are trained using signal/control MC samples and the corresponding high mass sideband data as background proxies
 - Two BDTs, one for $B^0 o
 ho^0 \gamma$, another for $B^0 o K^{*0} \gamma$
- Input variables: nTracks, kinematics of B mesons, isolation of daughters and intermediate resonances

• B: expected combinatorial background in the signal region, scaled from high mass sideband

• The relative background contaminations are estimated using

$$C_{H_b \to Z}^{signal} = \frac{\mathscr{B}(H_b \to Z)}{\mathscr{B}(signal)} \frac{f_{H_b}}{f_d} \frac{\epsilon^{H_b \to Z}}{\epsilon^{signal}} \xrightarrow{\epsilon} e^{Acc} e^{presel} e^{BDT} \epsilon^{PID(hh)} \epsilon^{PID(\gamma)}$$

$$\frac{f_s}{f_d} = 0.254 \pm 0.0079 @ 13 \text{ TeV}$$

$$= 0.2385 \pm 0.0076 @ 7 \text{ TeV}$$

$$= 0.2385 \pm 0.0075 @ 8 \text{ TeV}$$

$$B^{0} \rightarrow K^{*0} \gamma \xrightarrow{B^{0} \rightarrow K^{*0} \gamma}_{B_{b} \rightarrow Z} \xrightarrow{\overline{C}_{H_{b} \rightarrow Z}^{B^{0} \rightarrow K^{*0} \gamma}}_{B_{b} \rightarrow Z} \xrightarrow{\overline{C}_{H_{b} \rightarrow Z}^{B^{0} \rightarrow K^{*0} \gamma}}_{\overline{D}^{0} \rightarrow K^{*} \gamma} \xrightarrow{\sim 2 \%}_{A_{b} \rightarrow \Lambda^{*} \gamma} \xrightarrow{\sim 1 \%}_{B_{s}^{0} \rightarrow \phi \gamma} \xrightarrow{\sim 1 \%}_{A_{b} \rightarrow K^{*} \gamma} \xrightarrow{\sim 1 \%}_{A_{b} \rightarrow K^{$$

- Other backgrounds are studied and found to be negligible
- Dominant background for $B^0 \to \rho^0 \gamma$ are misidentified $B^0 \to K^{*0} \gamma$, $B^0 \to \pi \pi \pi^0$ and $B^0_s \to \phi(\to \pi \pi \pi^0) \gamma$

Data fit

- A simultaneous unbinned maximum likelihood fit to the invariant-mass distributions in $K\pi\gamma$ and $\pi\pi\gamma$ modes LHCb unofficial
- Few signal shape parameters are shared between $B^0 \to \pi \pi \gamma$ and $B^0 \to K \pi \gamma$ and others are fixed from simulation
- Partially reconstructed background: one missingpion
 - Fixed slopes (from MC), floated curvatures, floated yields
- Combinatorial background: first order polynomial with floated slopes and yields
- Peaking backgrounds
 - Shapes from MC, yields fixed using $K^*\gamma$ yield as normalisation for both $\pi\pi\gamma$ and $K\pi\gamma$
- Projection for signal mode is blinded (few thousand $\rho^0\gamma$ events expected)

14

Status

- All the necessary pre-unblinding studies are performed
 - ✓ Selection strategy
 - ID optimisation
 - \checkmark Analysis MVA training and optimisation
 - ✓ Background modelling and its estimations
 - ✓ Bias study due to model with huge toys
 - ✓ Systematic studies (being finalised) ☞

Analysis currently in review process and waiting for unblinding

- FCNC's are attractive to probe SM and physics beyond
- Radiative b-hadron decays provides sensitive to new physics
- Thanks to high statistics, LHCb is competitive to study those decays
 - First LHCb measurements related to $b \rightarrow d\gamma$ are in the horizon
- Run 3 is providing more statistics (> 9 fb⁻¹ in 2024), it will further reduce the uncertainty on different observables and also allow to study even further rare decays

Exciting results are coming soon...