Search for $B^0 \to K^{*0} \tau \ell$ at Belle II GDR-INF Annual Workshop 2024, Caen

<u>Clotilde Lemettais</u>, Valerio Bertacchi, Justine Serrano, Giampiero Mancinelli Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille

November 07, 2024

INTRODUCTION	Strategy	Selection	Mass fits and UL derivation	Conclusion
• 0	00	000000		0
MODULATION				

MOTIVATION

Search of LFV in $B \to s\tau \ell$ transitions

Four modes to analyse: $(OS,SS)x(e, \mu)$ > **OS:** Opposite sign between K from K^* and prompt lepton

> **SS:** Same sign between K from K^* and prompt lepton

- LFV forbidden in SM but predicted in many NP models
- Modes with τ more challenging due to missing energy in τ decay
- $\circ~$ No results for $B^0 \to K^{*0} \tau e$ yet

CLOTILDE LEMETTAIS

Search for $B^0 \to K^{*0} \tau \ell$ at Belle II

INTRODUCTION O	Strategy 00	Selection 000000	Mass fits and UL derivation 000	CONCLUSION O

THE BELLE II EXPERIMENT AT SUPERKEKB

- $\circ~$ Asymmetric e^+e^- collider at $\sqrt{s}=10.58$ GeV corresponding to $\Upsilon(4S)$ resonance
- $\circ~$ Holds instantaneous luminosity world record: $4.7\times10^{34}~{\rm cm}^{-2}{\rm s}^{-1}$
- $\circ~$ Pre-LS1 (2019-2022) on-resonance data : 365 fb^{-1}
- $\circ~$ Hermetic and almost 4π detector : Reconstruction of missing energy

INTRODUCTION OO	STRATEGY •0	Selection 000000	Mass fits and UL derivation 000	CONCLUSION
ANALYSIS	STRATEGY			

Data and MC samples:

- Use pre-LS1 (2019-2022) Belle II data (362 fb⁻¹) and full Belle dataset (711 fb⁻¹) 0
- Allow to fully exploit the available statistics 0
- Use signal and generic MC simulations of Belle II and Belle, where generic are 0 $B^0 \bar{B^0}$ (mixed), $B^+ B^-$ (charged) and $q\bar{q}$ simulated events

Tagged analysis: the full events is reconstructed

- \bigcirc No missing energy in the tag side 0
- 2 Very low efficiency (B^0 hadronic tagging: $\sim 0.2\%$ efficiency) 0

INTRODUCTION	Strategy	Selection	Mass fits and UL derivation 000	Conclusion
OO	o●	000000		0

EVENT RECONSTRUCTION

Tag side:

• Hadronic tagging

Signal side:

- $\circ~$ Reconstruction of $K^{*0}\ell,\,K^{*0}\to K^+\pi^-$
- Reconstruction of one track from τt_{τ} for background rejection purpose (not used in τ recoil mass)

Rest Of Event:

 $\circ~$ Use information from ROE for background rejection as well

Measurement: Extract the signal from a fit to the τ recoil mass

$$M_{\tau}^{2} = m_{B}^{2} + m_{KstEll}^{2} - 2(E_{Btag}^{*}E_{KstEll}^{*} + |p_{Btag}^{*}||p_{KstEll}^{*}|cos\theta^{*}|)$$

INTRODUCTION	Strategy	Selection	Mass fits and UL derivation	Conclusion
OO	00	•00000		o

CUT-BASED SELECTION

We are limited by the very small tagging efficiency

- \Rightarrow selection idea is to be as loose as possible
 - $\circ~$ Track selection: particle ID, coming from the interaction point
 - Tagging quality: minimum recommended selection
 - $\circ~$ Signal side: K^* mass window at $\pm 50 {\rm MeV/c^2}$
 - $\circ~$ Rest Of Event: <3 track in ROE and, for Belle only, total charge equal to 0

INTRODUCTION	Strategy	Selection	Mass fits and UL derivation 000	Conclusion
OO	00	000000		o

CUT-BASED SELECTION

- Signal region: $M_{\tau} \in [1.0, 2.5] \text{GeV/c}^2$
- Vetoes to target very specific backgrounds
 - J/ψ veto in $M(\ell t_{\tau})$ for resonant $B^0 \to K^{*0}\ell\ell$
 - $K\pi\pi$ veto in $M(K^*\ell)$ for $B^0 \to D(\to K\pi\pi)t_{\tau}$ with $\pi \mu$ misID $(OS\mu)$, and in $M(K^*t_{\tau})$ for $B^0 \to D(\to K\pi\pi)\ell$ where $t_{\tau} == \pi$ (SS)

- Train 8 BDTs (4 modes × Belle II/Belle) targeting both $B\bar{B}$ and $q\bar{q}$ with input variables : inv. masses, $\ell/t/ROE$ energies, eventshape variables, vertex fit variables
- $\circ~$ Optimisation of the hyperparameters with $\tt Optuna$
- $\circ~$ Good separation for $q\bar{q}$ in OS modes

Feature importance for channel OSmu

NROF (ECL) neutral

 $dr(V_{K^*\ell})$

INTRODUCTION OO	Strategy 00	Selection 000000	Mass fits and UL derivation	CONCLUSION

BDT TRAINING

CLOTILDE LEMETTAIS

Search for $B^0
ightarrow {K^{*0}} au \ell$ at Belle II

INTRODUCTION	Strategy	Selection	Mass fits and UL derivation	Conclusion
OO	00	000000		0

BDT DATA/MC COMPARISON

- Check data/MC agreement in sideband regions $M(\tau) \in [1.0, 1.5[\cup]2.0, 2.5] \text{GeV/c}^2$
- Good agreement in Belle II
- \circ Data deficit in both Belle SS modes (to investigate)

INTRODUCTION	STRATEGY	Selection	Mass fits and UL derivation 000	Conclusion
OO	00	000000		o
	0			

DATA/MC COMPARISON IN M_{τ} BEFORE/AFTER BDT

INTRODUCTION	Strategy	Selection	Mass fits and UL derivation	Conclusion
OO	00	000000	•00	0
FIT PROCEDUI	RE			

- $\circ~$ Add the Belle and Belle II datasets together to perform a combined fit
- $\circ~$ Fit region for the τ recoil mass: [1.3, 2.3]GeV/c^2
- Signal fit : Johnson PDF (def. in backup)
- Background fit : 2nd order Chebychev polynomials (def. in backup)

INTRODUCTION	Strategy	Selection	Mass fits and UL derivation $0 \bullet 0$	Conclusion
OO	00	000000		o

TOTAL FIT

Total fit on simulation:

- $\circ~$ Signal fit parameters are fixed
- Background polynomial coefficients are free
- Signal and background yields are free and allowed to go negative

INTRODUCTION 00	Strategy 00	Selection 000000	Mass fits and UL derivation $00 \bullet$	CONCLUSION O

EXPECTED UPPER LIMITS

 $\circ~$ The expected upper limit at 90% CL on the branching fraction is derived from the CLs asymptotic method.

	N_{sig}^{UL}	ε_{sig} [%]	$\mathcal{B}r_{exp}^{UL}~(imes 10^{-5})$	$\mathcal{B}r_{LHCb}^{UL}$ (×10 ⁻⁵) [1]
OSe	9.1	0.049	2.5	
SSe	10.8	0.034	4.2	_
$OS\mu$	7.3	0.039	2.5	1.0
$SS\mu$	10.3	0.028	4.9	0.8

INTRODUCTION 00	Strategy 00	Selection 000000	Mass fits and UL derivation	Conclusion
SUMMARY A	AND NEXT STEP	PS		

- $\circ~$ Main part of the analysis is finalised
- $\circ~$ Muon modes won't be competitive with LHCb result but there is no measurement of the electron modes yet
- $\circ~$ Possibility to study also the non-resonant $B^0\to K\pi\tau\ell$ channels that have never been measured
- $\circ~$ Target 2025 winter conferences for publication
- $\circ~$ Last steps before starting the review process are the estimation of the systematic uncertainties :
 - Study of the control channel $B^0 \to D^- D_s^+ (\to K^{*0} K^+ / \phi \pi^+)$ for the BDT and signal shape validation (ongoing)
 - Estimation of the PID and tagging systematics (to do)

Thank you for your attention !

Search for $B^0 \to K^{*0} \tau \ell$ at Belle II

BACKUP

BACKUP

Selection – Signal and Tag

Bsig $(K^{*0}\ell)$:

- $e,\,\mu,\,\pi,\,K:$
 - $\circ~dr < 0.5~{\rm cm}$ and $|dz| < 5~{\rm cm}$
 - $\circ \ \ nCDCHits{> 20}$
 - $\circ~$ particle ID \geq 0.9 (0.6 for pions and kaons)
 - $\circ~$ Bremsstrahlung correction for e
- K^{*0} : $|dM| < 0.05 \text{ GeV/c}^2$

t1prong (inclusive reco): t_{τ} :

- $\circ~dr < 4~{\rm cm}$ and $|dz| < 20~{\rm cm}$
- \circ nCDCHits>20

Btag (FEI):

- \circ hadronic tag
- \circ B_{tag} Mbc > 5.272 GeV/c²
- $\circ \text{ cosTBTO} < 0.9$
- $\circ~$ -0.15 GeV < delta E < 0.1 GeV
- $\circ \ \ {\rm Signal Probability} > 10^{-3}$

Selection – Event shape, kinematics and ROE

Photons:

 $\circ~$ GoodGamma:

cluster Reg == 1 and cluster E $> 0.075~{\rm GeV}$

or

```
cluster
Reg == 2 and cluster
E > 0.05~{\rm GeV}
```

 \mathbf{or}

```
clusterReg == 3 and clusterE > 0.1 GeV
```

- $\circ ~~ E > 0.05~ GeV$
- $\circ~$ beamBackgroundSuppression >0.3 and fakePhotonSuppression >0.3

Good track:

- $\circ~dr < 10~{\rm cm}$ and $|dz| < 20~{\rm cm}$
- $\circ \ \ {\rm thetaInCDCAcceptance}$

Continuum suppression:

 \circ sphericity > 0.2

ROE: e, μ, K :

- $\circ~dr < 0.5~{\rm cm}$ and $|dz| < 5~{\rm cm}$
- $\circ~$ particle ID $\geq 0.9~(0.6~{\rm for~kaons})$

< 3 charged track in ROE ROE charge == 0 for Belle only

BACKUP 00000000

BDT RESULTS FOR OSe

Search for $B^0 \to K^{*0} \tau \ell$ at Belle II

SIGNAL AND BACKGROUND PDFs

Signal: Johnson PDF

$$PDF_{Johnson} = \frac{\delta}{\lambda\sqrt{2\pi}} \frac{1}{\sqrt{1 + (\frac{x-\mu}{\lambda})^2}} \exp\left[-\frac{1}{2}\left(\gamma + \delta \sinh^{-1}\left(\frac{x-\mu}{\lambda}\right)\right)^2\right]$$

where μ represents the mean of the gaussian component, λ its width, γ the distortion of the distribution to the left/right, and δ the strength of the gaussian-like component.

Background: 2nd Order Chebychev polynomial

$$PDF_{Chebychev} = T_0(x) + c_1 T_1(x) + c_2 T_2(x)$$

$$T_0(x) = 1 \quad ; \quad T_1(x) = x \quad ; \quad T_2(x) = 2x T_1(x) - T_0(x) = 2x^2 - 1$$

CLOTILDE LEMETTAIS

SIMULTANEOUS FIT FOR BELLE II AND BELLE

- Motivation : to try to improve sensitivity, perform a simultaneous fit of Belle II and Belle to extract the upper limit instead of adding the two datasets
- $\circ~$ Fit signal and background in Belle II and Belle datasets separately
- $\circ~$ Derive expected upper limit with asymptotic CLs method from a simultaneous fit of the branching fraction to the Belle II and Belle datasets

	ε_{sig} (Belle II) [%]	$\varepsilon_{sig}(\text{Belle})$ [%]	$\mathcal{B}r_{simFit}^{UL}$ (×10 ⁻⁵)	$\mathcal{B}r_{exp}^{UL}$	$\mathcal{B}r_{best}^{UL}$
OSe	0.065	0.041	2.4	2.5	—
SSe	0.040	0.031	4.4	4.2	—
$OS\mu$	0.043	0.037	2.4	2.5	1.0
$SS\mu$	0.036	0.024	4.7	4.9	0.8

 $\circ~$ Very similar results compared to summing the datasets

SIMULTANEOUS FITS FOR BELLE II AND BELLE

BACKUP 00000000

Simultaneous fits for Belle II and Belle – Pulls

Difficulty to fit Belle II OS modes for low branching fraction

CLOTILDE LEMETTAIS