GDR - 2024

Search for lepton flavour violation in $B \rightarrow \rho \tau \ell$, at Belle II

Isaac Consigny

November 7, 2024

$B ightarrow ho au \ell$ - Context

- Search for lepton flavour violation $b \rightarrow d\tau \ell$: probe for new physics
- 4 modes to analyse:

 $B\to\rho\tau^+\ell^-$: OSe and OSmu

 $B
ightarrow
ho au^- \ell^+$: SSe and SSmu

OS : charge of ℓ opposite sign of the b quark

SS : charge of ℓ same sign as the b quark

• Upper limits on *BR* computed by EFT with LHC data in February 2024: link to the paper $B \rightarrow \rho \tau \mu$: 7×10^{-5} $B \rightarrow \rho \tau e$: 1.4×10^{-4}

 \rightarrow This analysis will be the first direct measurement

Isaac Consigny

$B ightarrow ho au \ell$ - Tau mass

The signal side is reconstructed as $B
ightarrow
ho \ell$ and a track is added for the au

Recoil mass : $M_{\tau} = \sqrt{m_B^2 + m_{
ho\ell}^2 - 2(E_{Btag}^* E_{
ho\ell}^* + p_{Btag}^* p_{
ho\ell}^* cos(\theta^*))}$ (* : center of mass) ρ 1 Prona B e⁻,μ⁻ tag side

Reconstruction using FEI

- Hadronic tagging
- Reconstruction efficiency : $\approx 0.2\%$
- \rightarrow The constraint comes from the tag

Reconstruction using GraFEI

- **GraFEI** : GNN (graph neural network) trained with MC signal events to recognize it
- The signal side is reconstructed by the GNN
- The tag side is defined with the rest of particles (inclusive tagging)
- Only on the OSe mode for now
- Reconstruction efficency : $\approx 6\%$
- \rightarrow The constraint comes from the signal

Grafei operation

Input: graph with nodes as track variables (pID, momenta...) and edges as connections between tracks (DOCA, angles...)

Figure 1: Grafei structure, J. Cerasoli. slides

- Nodes = mass hypothesis
- Edges = latest common ancestor
- Nodes and edges are compared to MC truth
- Loss function calculation and GNN parameters update

Figure 2: Grafei output

$B ightarrow ho au \ell$ - Reconstruction: FEI and GraFEI, $M_{ au}$

The fei (hadronic) reconstruction has a better resolution than the grafei (inclusive) reconstruction

MC matching signal side for comparison

The cut-based preselection is applied **only for the FEI reconstruction** Variables used for the preselection: M_{τ} , M_{bc} of tag side B, **invariant masses** of "rho - lepton" and "lepton - tau prong", number of **charged tracks** in the **ROE**, number of **clusters** in the **ROE**

Cut - based selection for the grafei samples ?

FEI yields are after the cut-based selection.

The inclusive approach reconstruct a lot more background

Background	FEI	GraFEI	ratio GraFEI/FEI
mixed	38777	1017083	26.2
charged	25391	967000	38.1
uubar	93802	3532954	37.7
ddbar	23826	777333	32.6
ccbar	71915	1913478	26.6
ssbar	8192	541521	66.1

Table 1: Background yield scaled to 1400 fb-1 (mode OSe)

$B \to \rho \tau \ell$ - Background rejection - BDT

FEI samples

Cut at 0.98

Important variables: charged/energy clusters in ROE, sphericity, Btag R2 ...

GraFEI samples

Cut at 0.9 Important variables: sphericity, grafei "output", BtagR2 ...

$B \rightarrow \rho \tau \ell$ - Background rejection - BDT

FEI samples

GraFEI samples

Efficiencies after BDT cut : FEI : 0.047 % and GraFEI : 1.85%

Remaining background, FEI samples

FEI

- Remaining peak close to the D^* mass (ongoing investigation)
- Possibility to perform a fit

Remaining background, Grafei samples

Grafei

- The signal is still very "background like"
- The reconstruction needs to be improved (better selection of the particles involved in the Btag)

Background	FEI	GraFEI	ratio GraFEI/FEI
mixed	215	42916	199.6
charged	162	32400	200.0
uubar	69	11136	161.4
ddbar	15	2444	162.9
ccbar	57	12391	217.3
ssbar	9	1739	193.2

Table 2: Background yield after BDT (scaled to 1400 fb-1 mode OSe)

- **FEI** (exclusive) signal efficiency \approx 0.047 % with good background rejection \rightarrow next steps : fit of the M_{τ} , upper limits...
- GraFEI (inclusive approach) signal efficiency \approx 1.85 %
 - \rightarrow background still very high and under the signal
 - \rightarrow next steps : improve the reconstruction by selecting the particles involved in the Btag
 - \rightarrow improve the selection

BACK UP

Analyse de $B \rightarrow \rho \tau \ell$ - Cut-based selection

$B \rightarrow \rho \tau \ell$ - Selection vs qqbar

Figure 3: BDT features importance, FEI (left) and GraFEI (right)

Isaac Consigny