Improving the Global SMEFT Picture with Bounds on Neutrino NSI

Salvador Urrea

Based on arXiv:2411.00090

GDR-InF Annual Workshop

November 7, 2024

Laboratoire de Physique des 2 Infinis

Call for new Physics

Call for new Physics

SMEFT

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + \dots$$
$$\delta \mathcal{L}^{d} = \sum \frac{c_k \mathcal{O}_k^{(d)}}{k}$$

$$\delta \mathcal{L}^d \equiv \sum_k \frac{c_k \mathcal{O}_k^{(\alpha)}}{\Lambda^{d-4}}$$

Weinberg operator

$$\delta \mathcal{L}^{d=5} = \frac{1}{2} \frac{\kappa_{\alpha\beta}^{(5)}}{\Lambda} \left(\overline{l_{L\alpha}^C} \tilde{\phi}^* \right) \left(\tilde{\phi}^\dagger l_{L\beta} \right) + \text{ h.c.}$$

Neutrino Masses

Weinberg, S. 1979

SMEFT

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + \dots$$
$$\delta \mathcal{L}^{d} \equiv \sum_{k} \frac{c_k \mathcal{O}_k^{(d)}}{\Lambda^{d-4}}$$

A few examples

$$O_{lq}^{(1)} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{q}_L \gamma^\mu q_L\right) \qquad O_{ld} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{d}_R \gamma^\mu d_R\right)$$
$$O_{lq}^{(3)} = \left(\bar{l}_L \gamma_\mu \sigma^k l_L\right) \left(\bar{q}_L \gamma^\mu \sigma^k q_L\right) \qquad O_{eq} = \left(\bar{e}_R \gamma_\mu e_R\right) \left(\bar{q}_L \gamma^\mu q_L\right)$$
$$O_{lu} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{u}_R \gamma^\mu u_R\right)$$

SMEFT connection with NSI

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + \dots$$

$$\delta \mathcal{L}^d \equiv \sum_k \frac{c_k \mathcal{O}_k^{(d)}}{\Lambda^{d-4}}$$

Operators affecting neutrinos oscillations

 $\delta \mathcal{L}^{d=6} = \text{NSI} + \dots$

- ν Production
- ν Propagation
- ν Detection

Charged current (CC) NSI

$$\mathcal{L}_{\text{NSI,CC}} = -2\sqrt{2}G_F \sum_{f,f',\alpha,\beta} \varepsilon_{\alpha\beta}^{ff',P} \left(\bar{\ell}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma^{\mu}Pf'\right) + \text{ h.c.}$$

- Affect detection and production.
- Strongly constrained by other observables like meson and lepton decays.

Neglected in neutrino oscillation studies

Biggio, Blennow, Fernández-Martínez 2019

Neutral current (NC) NSI $P = P_L, P_R$

$$\mathcal{L}_{\text{NSI,NC}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f,P} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}Pf\right).$$

 $\varepsilon_{\alpha\beta}^{f,V} \equiv \varepsilon_{\alpha\beta}^{f,L} + \varepsilon_{\alpha\beta}^{f,R} \qquad \varepsilon_{\alpha\beta}^{f,A} \equiv \varepsilon_{\alpha\beta}^{f,L} - \varepsilon_{\alpha\beta}^{f,R}$ **Propagation Detection Detection**

 Much more difficult to probe, main bounds from oscillation data.

Combination of global fits

Non-Osc. + CEvNS

Bresó-Pla, V., Falkowski, A., González-Alonso, M., & Monsálvez-Pozo, K. (2023). **EFT analysis of New Physics at COHERENT**. JHEP, 05, 074.

SMEFT

- $\nu_{\mu}, \nu_{e} \text{ scattering on nuclei}$ $\beta \text{ decays}$ $\pi, K \text{ decays}$
- μ, τ decays

. . .

Osc. + CEvNS

Coloma, P., Gonzalez-Garcia, M. C., Maltoni, M., Pinheiro, J. P., & Urrea, S. (2023). Global constraints on nonstandard neutrino interactions with quarks and electrons. JHEP, 08, 032.

NC NSI

Solar

Atmospheric

Reactor

Accelerator

COHERENT CsI and LAr

Dresden II Ge

COHERENT CsI and LAr

Lepton flavor conserving

Theoretical framework

NSI: Propagation

$$i\frac{d}{dx}\left|\nu_{\alpha}(x)\right\rangle = H_{\alpha\beta}\left|\nu_{\beta}(x)\right\rangle.$$

$$\mathcal{E}_{\alpha\beta}(x) = \left(\varepsilon_{\alpha\beta}^{e,V} + \varepsilon_{\alpha\beta}^{p,V}\right) + Y_n(x)\varepsilon_{\alpha\beta}^{n,V} \quad \text{with} \quad Y_n(x) \equiv \frac{N_n(x)}{N_e(x)}$$

NSI: Propagation

$$i\frac{d}{dx}\left|\nu_{\alpha}(x)\right\rangle = H_{\alpha\beta}\left|\nu_{\beta}(x)\right\rangle.$$

$$H = \frac{1}{2E} U \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} U^{\dagger} + \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \mathcal{E}_{ee}(x) & \mathcal{E}_{e\mu}(x) & \mathcal{E}_{e\tau}(x) \\ \mathcal{E}_{e\mu}^*(x) & \mathcal{E}_{\mu\mu}(x) & \mathcal{E}_{\mu\tau}(x) \\ \mathcal{E}_{e\tau}^*(x) & \mathcal{E}_{\mu\tau}^*(x) & \mathcal{E}_{\tau\tau}(x) \end{pmatrix}$$

Vacuum Matter

$$\mathcal{E}_{\alpha\beta}(x) = \left(\varepsilon_{\alpha\beta}^{e,V} + \varepsilon_{\alpha\beta}^{p,V}\right) + Y_n(x)\varepsilon_{\alpha\beta}^{n,V} \quad \text{with} \quad Y_n(x) \equiv \frac{N_n(x)}{N_e(x)}$$

A global phase in the Hamiltonian does not modify propagation and propagation is only sensitive to

$$\Delta m_{21}^2 \Delta m_{32}^2 \mathcal{E}_{ee} - \mathcal{E}_{\mu\mu}$$
$$\mathcal{E}_{\tau\tau} - \mathcal{E}_{\mu\mu} \mathcal{E}_{\alpha\beta} \alpha \neq \beta$$

NSI: Propagation

$$i\frac{d}{dx}\left|\nu_{\alpha}(x)\right\rangle = H_{\alpha\beta}\left|\nu_{\beta}(x)\right\rangle.$$

$$H = \frac{1}{2E} U \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} U^{\dagger} + \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \mathcal{E}_{ee}(x) & \mathcal{E}_{e\mu}(x) & \mathcal{E}_{e\tau}(x) \\ \mathcal{E}_{e\mu}^*(x) & \mathcal{E}_{\mu\mu}(x) & \mathcal{E}_{\mu\tau}(x) \\ \mathcal{E}_{e\tau}^*(x) & \mathcal{E}_{\mu\tau}^*(x) & \mathcal{E}_{\tau\tau}(x) \end{pmatrix}$$

Vacuum
Matter

$$\mathcal{E}_{\alpha\beta}(x) = \left(\varepsilon_{\alpha\beta}^{e,V} + \varepsilon_{\alpha\beta}^{p,V}\right) + Y_n(x)\varepsilon_{\alpha\beta}^{n,V} \quad \text{with} \quad Y_n(x) \equiv \frac{N_n(x)}{N_e(x)}$$

A global phase in the Hamiltonian does not modify propagation and propagation is only sensitive to

$$\Delta m_{21}^2 \Delta m_{32}^2 \mathcal{E}_{ee} - \mathcal{E}_{\mu\mu}$$
$$\mathcal{E}_{\tau\tau} - \mathcal{E}_{\mu\mu} \mathcal{E}_{\alpha\beta} \alpha \neq \beta$$

Atmospheric and LBL

$$\varepsilon_{\alpha\beta}^{\oplus} = \left(\varepsilon_{\alpha\beta}^{e,V} + \varepsilon_{\alpha\beta}^{p,V}\right) + Y_n^{\oplus}\varepsilon_{\alpha\beta}^{n,V}, \quad Y_n^{\oplus} = \frac{N_n^{\oplus}}{N_e^{\oplus}} \simeq 1.051 \quad \begin{array}{c} \text{(Average in Earth)} \\ \text{Earth)} \end{array}$$

NSI: NC detection

Elastic ν scattering with electrons

 $\mathrm{ES} \longrightarrow g(\varepsilon_{\alpha\alpha}^{e,R}, \varepsilon_{\alpha\alpha}^{e,L})$

 $\begin{array}{ll} \text{NC on deutirum} & \text{CEvNS} \\ \\ \text{SNO} \longrightarrow h(\sum_{\alpha} \varepsilon_{\alpha\alpha}^{u,A} - \varepsilon_{\alpha\alpha}^{d,A}) & \text{CE}\nu\text{NS} \longrightarrow f(\varepsilon_{\alpha\alpha}^{d,V}, \varepsilon_{\alpha\alpha}^{u,V}) \\ \\ & \alpha = e, \mu \end{array}$

Matching

Integrate out the heavy SM fields like the W,Z... employing EOM

Matching

 $\mathcal{L}_{\text{SMEFT}}$ $\mathcal{L}_{\text{WEFT}} \supset \mathcal{L}_{\text{NSI}}$

 $\varepsilon_{\alpha\alpha}^{e,V} = O(\text{Well constraint by Non-Osc}), \qquad \varepsilon_{\alpha\alpha}^{e,A} = O(\text{Well constraint by Non-Osc}),$ $\varepsilon_{\alpha\alpha}^{u,V} = \frac{1}{2} \left(\left[c_{\ell q}^{(1)} \right]_{\alpha\alpha 11} + \left[c_{\ell q}^{(3)} \right]_{\alpha\alpha 11} + \left[c_{\ell u} \right]_{\alpha\alpha 11} \right) + O(\text{Well constraint by Non-Osc}),$ $\varepsilon_{\alpha\alpha}^{d,V} = -\frac{1}{2} \left(\left[c_{\ell q}^{(1)} \right]_{\alpha\alpha 11} - \left[c_{\ell q}^{(3)} \right]_{\alpha\alpha 11} + \left[c_{\ell d} \right]_{\alpha\alpha 11} \right) + O(\text{Well constraint by Non-Osc}),$ $\varepsilon_{\alpha\alpha}^{u,A} = -\frac{1}{2} \left(\left[c_{\ell q}^{(1)} \right]_{\alpha\alpha 11} + \left[c_{\ell q}^{(3)} \right]_{\alpha\alpha 11} - \left[c_{\ell u} \right]_{\alpha\alpha 11} \right) + O(\text{Well constraint by Non-Osc}),$ $\varepsilon_{\alpha\alpha}^{d,A} = -\frac{1}{2} \left(\left| c_{\ell q}^{(1)} \right|_{\alpha\alpha 11} - \left| c_{\ell q}^{(3)} \right|_{\alpha\alpha 11} - [c_{\ell d}]_{\alpha\alpha 11} \right) + O(\text{Well constraint by Non-Osc}).$ $O_{lu} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{u}_R \gamma^\mu u_R\right)$ $O_{l_{\alpha}}^{(1)} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{q}_L \gamma^\mu q_L\right)$ $O_{la}^{(3)} = \left(\bar{l}_L \gamma_\mu \sigma^k l_L\right) \left(\bar{q}_L \gamma^\mu \sigma^k q_L\right)$ $O_{ld} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{d}_R \gamma^\mu d_R\right)$

SMEFT impact on neutrino NSIs

NSI	95% C.L. bound		
INDI	Osc. + $CE\nu NS$	Non-Osc. + Osc. + $CE\nu NS$	
$\varepsilon_{ee}^{\oplus}$	(-0.58, 0.50)	(-0.75, 0.16)	
$arepsilon_{\mu\mu}^\oplus$	(-0.61, 0.47)	(-0.79, 0.11)	
$\varepsilon_{ au au}^\oplus$	(-0.62, 0.43)	(-0.80, 0.08)	
$arepsilon_{ee}^\oplus - arepsilon_{\mu\mu}^\oplus$	(-0.14, 0.27)	(-0.14, 0.27)	
$\varepsilon^{\oplus}_{\tau\tau} - \varepsilon^{\oplus}_{\mu\mu}$	(-0.014, 0.025)	(-0.014, 0.025)	

 $\begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ -0.2 \\ -0.4 \\ -0.6 \\ -0.8 \\ -1.0 \\ -1.0 \\ -0.8 \\ -0.6 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.8 \\ -0.8 \\ -0.6 \\ -0.8 \\ -0.8 \\ -0.6 \\ -0.8 \\ -0.8 \\ -0.6 \\ -0.8 \\ -0.8 \\ -0.6 \\ -0.8 \\ -0.8 \\ -0.6 \\ -0.8 \\$

- Neutrino propagation depends only on the differences of NSI.
- Improvements in the second family propagate to the other families.

Neutrino data impact on SMEFT

$$\left[\hat{c}_{eq}\right]_{ee11} := \left[c_{eq}\right]_{ee11} + \left[c_{\ell q}^{(1)}\right]_{ee11}$$

Operators	1σ interval		
Operators	Non-Osc.	Non-Osc. + Osc. + $CE\nu NS$	
$[\hat{c}_{eq}]_{ee11}$	0.76 ± 1.80	0.07 ± 0.30	
$[c_{\ell u}]_{\mu\mu11}$	0.110 ± 0.091	0.058 ± 0.076	CEvNS
$[c_{\ell d}]_{\mu\mu11}$	0.19 ± 0.27	0.11 ± 0.25	
$[\hat{c}_{\ell q}^{(1)}]_{\tau \tau 11}$	Unconstrained	0.07 ± 0.19	
$[\hat{c}_{\ell u}]_{\tau \tau 11}$	Unconstrained	-0.04 ± 0.54	

New bounded SMEFT combinations

$$\varepsilon_{\tau\tau}^{\oplus} \longrightarrow \left[\hat{c}_{\ell q}^{(1)} \right]_{\tau\tau 11} = \left[c_{\ell q}^{(1)} \right]_{\tau\tau 11} + \frac{2 + Y_n^{\oplus}}{3\left(1 + Y_n^{\oplus} \right)} \left[c_{\ell u} \right]_{\tau\tau 11} + \frac{1 + 2Y_n^{\oplus}}{3\left(1 + Y_n^{\oplus} \right)} \left[c_{\ell d} \right]_{\tau\tau 11}$$

 $SNO \longrightarrow [\hat{c}_{\ell u}]_{\tau\tau 11} = [c_{\ell u}]_{\tau\tau 11} - [c_{\ell d}]_{\tau\tau 11} .$ 1 flat direction $[c_{\ell u}]_{\tau\tau 11} = [c_{\ell d}]_{\tau\tau 11} = - \left[c_{\ell q}^{(1)}\right]_{\tau\tau 11}$

Conclusions

• SMEFT and NSI are a good way to parametrize new physics in a model-independent way.

• Current neutrino data can provide useful complementary information to constrain SMEFT.

Lagrangians

$$\mathcal{L}_{\rm NC-NSI} \supset -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{f,X} \left(\bar{\nu}_{\alpha} \gamma_{\mu} P_L \nu_{\beta} \right) \left(\bar{f} \gamma^{\mu} P_X f \right),$$

$$\mathcal{L}_{\rm CC-NSI} \supset -2\sqrt{2}G_F \left\{ \varepsilon^{\mu eX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta} \right) \left(\bar{\mu}\gamma^{\mu}P_X e \right) + \varepsilon^{udL}_{\alpha\beta} \left(\bar{e}_{\alpha}\gamma_{\mu}P_L\nu_{\beta} \right) \left(\bar{u}\gamma^{\mu}P_L d \right) \right. \\ \left. + \varepsilon^{udR}_{\alpha\beta} \left(\bar{e}_{\alpha}\gamma_{\mu}P_L\nu_{\beta} \right) \left(\bar{u}\gamma^{\mu}P_R d \right) + \frac{1}{2} \varepsilon^{udS}_{\alpha\beta} \left(\bar{e}_{\alpha}P_L\nu_{\beta} \right) \left(\bar{u}d \right) \right. \\ \left. + \frac{1}{2} \varepsilon^{udP}_{\alpha\beta} \left(\bar{e}_{\alpha}P_L\nu_{\beta} \right) \left(\bar{u}\gamma_5 d \right) + \varepsilon^{udT}_{\alpha\beta} \left(\bar{e}_{\alpha}\sigma_{\mu\nu}P_L\nu_{\beta} \right) \left(\bar{u}\sigma^{\mu\nu}P_L d \right) \right\} + h.c.$$

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \mathcal{L}_{d=5} + \mathcal{L}_{d=6} + \dots,$$
 $\mathcal{L}_{d=6} = \sum_{i} rac{c_i}{v^2} \mathcal{O}_i$

Lagrangians

$$\begin{split} \mathcal{L} \supset eA^{\mu} & \sum_{f=u,d,e} Q_{f} \left(\bar{f}_{I} \bar{\sigma}_{\mu} f_{I} + f_{I}^{c} \sigma_{\mu} \bar{f}_{I}^{c} \right) \\ &+ \frac{g_{L}}{\sqrt{2}} \left[W^{\mu +} \bar{\nu}_{I} \bar{\sigma}_{\mu} \left(\delta_{IJ} + \left[\delta g_{L}^{We} \right]_{IJ} \right) e_{J} + W^{\mu +} \bar{u}_{I} \bar{\sigma}_{\mu} \left(V_{IJ} + \left[\delta g_{L}^{Wq} \right]_{IJ} \right) d_{J} + \text{ h.c. } \right] \\ &+ \frac{g_{L}}{\sqrt{2}} \left[W^{\mu +} u_{I}^{c} \sigma_{\mu} \left[\delta g_{R}^{Wq} \right]_{IJ} \bar{d}_{J}^{c} + \text{ h.c. } \right] \\ &+ \sqrt{g_{L}^{2} + g_{Y}^{2}} Z^{\mu} \sum_{f=u,d,e,\nu} \bar{f}_{I} \bar{\sigma}_{\mu} \left(\left(T_{3}^{f} - s_{\theta}^{2} Q_{f} \right) \delta_{IJ} + \left[\delta g_{L}^{Zf} \right]_{IJ} \right) f_{J} \\ &+ \sqrt{g_{L}^{2} + g_{Y}^{2}} Z^{\mu} \sum_{f=ude} f_{I}^{c} \sigma_{\mu} \left(-s_{\theta}^{2} Q_{f} \delta_{IJ} + \left[\delta g_{R}^{Zf} \right]_{IJ} \right) \bar{f}_{J} \end{split}$$

Operators SMEFT

Chirality conserving $(I, J = 1, 2, 3)$ Cl	hirality violating $(I, J = 1, 2, 3)$
$\begin{split} & [O_{\ell q}]_{IIJJ} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (\bar{q}_J \bar{\sigma}^\mu q_J) \\ & [O_{\ell q}^{(3)}]_{IIJJ} = (\bar{\ell}_I \bar{\sigma}_\mu \sigma^i \ell_I) (\bar{q}_J \bar{\sigma}^\mu \sigma^i q_J) \\ & [O_{\ell u}]_{IIJJ} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (u_J^c \sigma^\mu \bar{u}_J^c) \\ & [O_{\ell d}]_{IIJJ} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (d_J^c \sigma^\mu \bar{d}_J^c) \\ & [O_{eq}]_{IIJJ} = (e_I^c \sigma_\mu \bar{e}_I^c) (\bar{q}_J \bar{\sigma}^\mu q_J) \\ & [O_{eu}]_{IIJJ} = (e_I^c \sigma_\mu \bar{e}_I^c) (u_J^c \sigma^\mu \bar{u}_J^c) \\ & [O_{ed}]_{IIJJ} = (e_I^c \sigma_\mu \bar{e}_I^c) (d_J^c \sigma^\mu \bar{d}_J^c) \\ \end{split}$	$\begin{split} &[O_{\ell equ}]_{IIJJ} = (\bar{\ell}_{I}^{j} \bar{e}_{I}^{c}) \epsilon_{jk} (\bar{q}_{J}^{k} \bar{u}_{J}^{c}) \\ &\stackrel{(3)}{\ell equ}]_{IIJJ} = (\bar{\ell}_{I}^{j} \bar{\sigma}_{\mu\nu} \bar{e}_{I}^{c}) \epsilon_{jk} (\bar{q}_{J}^{k} \bar{\sigma}_{\mu\nu} \bar{u}_{J}^{c}) \\ &[O_{\ell edq}]_{IIJJ} = (\bar{\ell}_{I}^{j} \bar{e}_{I}^{c}) (d_{J}^{c} q_{J}^{j}) \end{split}$

One flavor $(I = 1, 2, 3)$	Two flavors $(I < J = 1, 2, 3)$
$[O_{\ell\ell}]_{IIII} = \frac{1}{2} (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (\bar{\ell}_I \bar{\sigma}^\mu \ell_I)$	$[O_{\ell\ell}]_{IIJJ} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (\bar{\ell}_J \bar{\sigma}^\mu \ell_J)$
	$[O_{\ell\ell}]_{IJJI} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_J) (\bar{\ell}_J \bar{\sigma}^\mu \ell_I)$
$[O_{\ell e}]_{IIII} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (e_I^c \sigma^\mu \bar{e}_I^c)$	$[O_{\ell e}]_{IIJJ} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (e_J^c \sigma^\mu \bar{e}_J^c)$
A reaction of the second	$[O_{\ell e}]_{JJII} = (\bar{\ell}_J \bar{\sigma}_\mu \ell_J) (e_I^c \sigma^\mu \bar{e}_I^c)$
	$\left[O_{\ell e}\right]_{IJJI} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_J) (e_J^c \sigma^\mu \bar{e}_I^c)$
$[O_{ee}]_{IIII} = \frac{1}{2} (e_I^c \sigma_\mu \bar{e}_I^c) (e_I^c \sigma^\mu \bar{e}_I^c)$	$\left[O_{ee}\right]_{IIJJ} = \left(e_I^c \sigma_\mu \bar{e}_I^c\right) \left(e_J^c \sigma^\mu \bar{e}_J^c\right)$

Full NC Matching

$$\begin{split} \varepsilon_{\alpha\alpha}^{e,V} &= \delta_{e\alpha} \left(\delta g_{L}^{We} - \delta g_{L}^{W\mu} + \frac{1}{2} [c_{\ell\ell}]_{e\mu\mu e} \right) - (1 - 4s_{w}^{2}) \delta g_{L}^{Z\nu\alpha} + \delta g_{L}^{Ze} + \delta g_{R}^{Ze} \\ &- \frac{1}{2} \Big([c_{\ell\ell}]_{ee\alpha\alpha} + [c_{\ell e}]_{\alpha\alpha ee} \Big) \,, \\ \varepsilon_{\alpha\alpha}^{u,V} &= \delta g_{L}^{Zu} + \delta g_{R}^{Zu} + \left(1 - \frac{8}{3} s_{w}^{2} \right) \delta g^{Z\nu\alpha} - \frac{1}{2} \left([c_{\ell q}^{(1)}]_{\alpha\alpha 11} + [c_{\ell q}^{(3)}]_{\alpha\alpha 11} + [c_{\ell u}]_{\alpha\alpha 11} \right) \,, \\ \varepsilon_{\alpha\alpha}^{d,V} &= \delta g_{L}^{Zd} + \delta g_{R}^{Zd} - \left(1 - \frac{4}{3} s_{w}^{2} \right) \delta g^{Z\nu\alpha} - \frac{1}{2} \left([c_{\ell q}^{(1)}]_{\alpha\alpha 11} - [c_{\ell q}^{(3)}]_{\alpha\alpha 11} + [c_{\ell d}]_{\alpha\alpha 11} \right) \,, \\ \varepsilon_{\alpha\alpha}^{u,A} &= \delta g_{L}^{Zu} - \delta g_{R}^{Zu} + \delta g^{Z\nu\alpha} - \frac{1}{2} \left([c_{\ell q}^{(1)}]_{\alpha\alpha 11} + [c_{\ell q}^{(3)}]_{\alpha\alpha 11} - [c_{\ell u}]_{\alpha\alpha 11} \right) \,, \\ \varepsilon_{\alpha\alpha}^{d,A} &= \delta g_{L}^{Zd} - \delta g_{R}^{Zd} - \delta g^{Z\nu\alpha} - \frac{1}{2} \left([c_{\ell q}^{(1)}]_{\alpha\alpha 11} - [c_{\ell q}^{(3)}]_{\alpha\alpha 11} - [c_{\ell u}]_{\alpha\alpha 11} \right) \,, \end{split}$$

NC on deuterium (Axial)

• CEvNS(Vector)

Our analysis includes data from:

- Solar: (Chlorine, Gallex/GNO, SAGE, SNO, SK[1-4], the first two phases of Borexino);
- Atmospheric: (SK[1-4], Deepcore, IceCUBE)
- **Reactor**: (KamLAND, Double-Chooz, Daya-Bay, RENO)
- Accelerator: (Minos, T2K, NovA)
- **CEvNS**: Dresden II, both the Ar target and the CsI target configurations of COHERENT.

