

Determination of Higgs Width Uncertainty in ee \rightarrow HZ, H(ZZ^{*}) \rightarrow 4l + xx Final State at FCC-ee

(FCC-ee Simulations)

Hind Taibi Supervised by Marco Delmastro and Olivier Arnaez

2023-2024

 $\sqrt{s} = 240 \text{ GeV}$

Recoil mass method to measure ZH cross section without any assumption about Higgs branching ratios $m_{rec}^2 = (\sqrt{s} - E_{ll})^2 - p_{ll}^2 \implies \sigma_{tot}(ee \rightarrow VH)$

Combine with measurements of exclusive Higgs decay cross sections to extract total width $\Gamma_{\rm H}$

$$\frac{\sigma_{\text{tot}}}{\sigma(\text{ee} \to \text{VH, H}(\text{ZZ}^*))} \Gamma_{\text{ZZ}} \longrightarrow \Gamma_{\text{H}}$$

Mixed final states (different combinations of ll jj $\nu\nu$) and 4 jets final states (ll jj jj) have already been studied studied by Ines Combes.

Signal: ZH, H(ZZ^{*})

 $ZH, H(ZZ^*)$ Feynman diagram with possible decays of the Z bosons.

Decay	Fraction
$l\bar{l}$ (e ⁺ e ⁻ , $\mu^+\mu^-$, $\tau^+\tau^-$)	~10 %
$rac{ u ar{ u}}{(u_e ar{ u_e}, u_\mu ar{ u_\mu}, u_ au_ au)}$	~20 %
$ \begin{array}{c} q\overline{q} \\ (u\overline{u}, d\overline{d}, c\overline{c}, s\overline{s}, b\overline{b}) \end{array} $	~70 %

Main decays of the Z boson.

The decays we are interested in: $HZ, H(ZZ^*) \rightarrow 4l + xx$

$\left\{\begin{array}{c} Z(ll) Z(ll) Z(jj) \\ Z(ll) Z(ll) Z(\nu\nu) \end{array}\right\}$	2 on shell leptonic Z
$\begin{bmatrix} Z(ll) & Z(jj) & Z(ll) \\ Z(ll) & Z(\nu\nu) & Z(ll) \end{bmatrix}$	1 on shell leptonic Z and
Z(jj) Z(ll) Z(ll) Z(vv) Z(ll) Z(ll)	1 off shell leptonic Z

Background

Analysis Stages

Z reconstruction with a loose preselection on the leptons and jets reconstruction

In Stage 1, we reconstruct up to three leptonic Z bosons: two "on shell" Z from electrons and muons with $p \in [20, 80]$ GeV (on_Z_leptonic) and one "off shell" Z from electrons and muons with p > 5 GeV (off_Z_leptonic).

All the particles, except the leptons that reconstructed the Z bosons, are used to reconstruct **jets** through the Durham algorithm.

Considering 2 on shell leptonic Z bosons Z(ll) Z(ll) Z*(jj or vv)

Number(on_Z_leptonic) = 2 which gives Z_a and Z_b Number(off_Z_leptonic) = 0

Analysis Stages

jj masses

After Stage 2A: 2 On Shell Leptonic Z Requiered

13

After Final AA: Z(ll) Z(ll) Z*(jj)

Recoil mass of the 1^{st} dilepton (Z_a) after the following cuts:

- 2 on shell leptonic Z requiered
- 80 GeV < $m(Z_a)$ < 110 GeV
- 80 GeV < $m(Z_b)$ < 110 GeV
- $E_{miss} < 8 \text{ GeV}$
- $E(\gamma) < 20 \text{ GeV}$
- m(jj) > 10 GeV

After Final AB: $Z(ll) Z(ll) Z^*(\nu\nu)$

Recoil mass of the 1^{st} dilepton (Z_a) after the following cuts:

- 2 on shell leptonic Z requiered
- 80 GeV < $m(Z_a)$ < 110 GeV
- 80 GeV < $m(Z_b)$ < 110 GeV
- $E_{miss} > 8 \text{ GeV}$

After Stage 2B: 1 On Shell and 1 Off Shell Leptonic Z Requiered

From left to right, recoil mass of the 1^{st} dilepton (Z_a) and recoil mass of the 2^{nd} dilepton (Z_b) after the following cuts:

- 1 on shell and 1 off shell leptonic Z requiered
- 80 GeV < $m(Z_a)$ < 110 GeV
- $10 \text{ GeV} < m(Z_b) < 65 \text{ GeV}$
- $E_{miss} < 8 \text{ GeV}$
- m(jj) > 10 GeV
- $m_{recoil}(Z_a) > 110 \text{ GeV}$

After Final BB: Z(ll) Z(vv) Z^{*}(ll) or Z(vv) Z(ll) Z^{*}(ll)

From left to right, recoil mass of the 1^{st} dilepton (Z_a) and recoil mass of the 2^{nd} dilepton (Z_b) after the following cuts:

- 1 on shell and 1 off shell leptonic Z requiered
- 80 GeV < $m(Z_a)$ < 110 GeV
- $10 \text{ GeV} < m(Z_b) < 40 \text{ GeV}$

• $E_{miss} > 8 \text{ GeV}$

• Z(ll) Z(ll) Z(jj) final state: pretty clean after simple cuts on the dilepton and dijet masses

We can already apply a fit on this channel

- Other final states: simple cuts aren't enough. Background coming mainly from $H \rightarrow \tau\tau$, $H \rightarrow qq$ and $ee \rightarrow ZZ$
 - Try more complexe methods than simple cuts: machine learning based on kinematic properties of signal and background
- Compute S/B ratio for each channel
- Use combine to fit the data