Higgs $\rightarrow \mathrm{bb} / \mathrm{cc} / \mathrm{gg} / \mathrm{ss} / W W / Z Z / t a u t a u$ with $\mathrm{Z}(\|, v v) \mathrm{H}$ at $\sqrt{ } \mathrm{s}=240 / 365 \mathrm{GeV}$

Studying the Higgs couplings

In the Standard Model (SM), fermions inherit their mass from their coupling with the Higgs Boson

Our study aims at estimating the best precision with which we could measure these couplings

$$
m_{f}=v \frac{y_{f}}{\sqrt{2}}
$$

Any deviation from the expected value would indicate possible beyond SM processes

The FCC experiment - FCC-ee

FCC-ee functioning schedule

- FCC (Future Circular Collider)
- ~90km circular collider project
- Two periods on functioning : FCC-ee \& FCC-hh

- Great improvement on EW studies wrt LEP
- Higgs factory
- Great prospects for new physics (hh)

(ZH) Higgstrahlung process - Recoil Mass

Recoil Mass :
$\left(E_{l l}+E_{H}, \overrightarrow{p_{l l}}+\overrightarrow{p_{H}}\right)=(\sqrt{s}, \overrightarrow{0}) \Rightarrow M_{\text {recoil }}^{2}=s+m_{Z}^{2}-2 E_{l l} \sqrt{s}$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

(ZH) Higgstrahlung process - ZII \& Znunu at 240 GeV

- $e^{+}+e^{-} \rightarrow Z+H$

Recoil Mass :

$\left(E_{l l}+E_{H}, \overrightarrow{p_{l l}}+\overrightarrow{p_{H}}\right)=(\sqrt{s}, \overrightarrow{0}) \Rightarrow M_{\text {recoil }}^{2}=s+m_{Z}^{2}-2 E_{l l} \sqrt{s}$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

FCCAnalyses: FCC-ee Simulation (Delphes)

Events selection - ZII example at 240 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

Events categorization

We train a Neural Network to categorize the events in one of the signal channels:
$\mathrm{H} \rightarrow \mathrm{bb} / \mathrm{cc} / \mathrm{gg} / \mathrm{ss} / \mathbf{W W} / Z Z / \tau \tau$

Znunu Confusion Matrix

ZII Confusion Matrix

"log_d23",
"log_d34",
"mjj",
"eti_iss",
jet1_1sD",
"jet2_isD",
\# "jet1_istau"
\# "jet2_istau"
include_ss:
varlist.extend(["jet1_isS", "jet2_isS"

Sufficient to get near perfect tautau labeling

Slightly improves performances in the $\mathbf{Z Z}$ cat.

Performed a "baseline" analysis of IIH (I=e,mu) and $v v \mathrm{H}$ channels at 365 GeV , to establish reference sensitivity (for further optimisation later)

- Same variables used for event selection at 240 GeV , loosening inefficient cuts (e.g. lepton momentum and recoil mass in IIH)
- no attention paid so far to efficiently reconstruct ZZ fusion in eeH channel nor separate WW fusion in v_{-}e v_{-}e H channel
- Use isolation to make channels orthogonal and improve S / B (at least one isolated lepton with $\mathrm{p}>40 \mathrm{GeV}$ in IIH , no isolated leptons with $\mathrm{p}>1 \mathrm{GeV}$ in $v v \mathrm{H}$)
- Assume L=2.3/ab
- Train MVA to discriminate among different Higgs decays
- Fit each channel and combination to extract the $\boldsymbol{\sigma} . \mathbf{B R}$ of the various decays

365 GeV - MC samples

Process	sigma [fb]	Ngen	Lgen [/fb]
vvHbb	31.430000000	1200000	38180
vvHcc	1.56000000	120000	75231

Cross sections predicted by Whizard

eeH almost $2 x$ larger than mumuH due to Z fusion contribution $\nu \nu \mathrm{H}$ receives large contribution from WW fusion

IIH

FCCAnalyses: FCC-ee Simulation (Delphes)

$v v \mathrm{H}$

FCCAnalyses: FCC-ee Simulation (Delphes)

365 GeV - MVA training

- Use same variables as for 240 GeV analysis and same training setup

Purity categorization

Goal : increase analysis sensitivity by including purity categories in the samples before after

In our analysis we considered $\mathbf{3}$ purity categories

We rebin all histograms to remove all empty bins in the fit to avoid non convergence
We use Combine to perform first ZII and Znunu fits independently

Systematics :
MCstats
5\% background norm.

Both channels are studied for a number of purity cats $\mathrm{i}=1,2,3$

We perform then the combination of the two channels

$240 \mathrm{GeV}=7.2 \mathrm{ab}-1$ || $365 \mathrm{GeV}=2.3 \mathrm{ab}-1$

Precision (\%)	bb	cc	gg	ss	WW	ZZ	$\boldsymbol{\tau}$
Z(II)H 240	0.83	4.84	2.65	287.06	2.08	16.03	4.93
Z(II)H 365	1.97	12.76	6.49	1424.84	6.11	51.07	15.02
Z(II)H 240+365	0.76	4.53	2.45	281.39	1.97	15.24	4.70
$\mathrm{Z}(\nu v) \mathrm{H} 240$	0.35	2.15	0.97	155.64	1.42	13.01	8.19
$\mathrm{Z}(v v) \mathrm{H} 365$	0.54	3.21	1.81	119.03	2.91	29.46	9.30
$\mathrm{Z}(\nu v) \mathrm{H} 240+365$	0.29	1.80	0.85	75.09	1.27	11.49	6.16
$\mathrm{Z}(\mathrm{ll}+v v) \mathrm{H} 240$	0.32	1.96	0.91	136.24	1.17	9.83	4.22
$\mathrm{Z}(11+\nu v) \mathrm{H} 365$	0.51	3.16	1.69	85.58	2.56	22.52	7.95
$\mathrm{Z}(\mathrm{II}+\nu v) \mathrm{H} 240+365$	0.27	1.67	0.80	72.46	1.06	8.97	3.74

Results are WIP (especially for the ss cat that needs some possible correction)

Conclusion: next steps

Precision (\%)	bb	cc	gg	ss	WW	ZZ

- Combination with $\mathbf{Z (q q) H (q q)}$
- Fix remaining issues with some channels
- Improve purity categorisation using another optimization
- Analysis including FV-violating samples and uu/dd is WIP
- Try to disentangle VBF from ZH - for couplings fit at 365 GeV

