Higgs → bb/cc/gg/ss/WW/ZZ/tautau with Z(II, $\nu\nu$)H at \sqrt{s} =240/365 GeV

02/07/2024

X

Alexis Maloizel

Supervised by Giovanni Marchiori

1

Studying the Higgs couplings

In the Standard Model (SM), fermions inherit their mass from their coupling with the Higgs Boson

Our study aims at estimating the best precision with which we could measure these couplings

$$m_f = v \frac{y_f}{\sqrt{2}}$$

Any deviation from the expected value would indicate possible beyond SM processes

Particle mass [GeV]

Expected relative uncertainty

The FCC experiment - FCC-ee

- **FCC** (Future Circular Collider)
 - ~90km circular collider project
 - Two periods on functioning : **FCC-ee** & FCC-hh

- Great improvement on EW studies wrt LEP
 Higgs factory
- Great prospects for new physics (hh)

(ZH) Higgstrahlung process - Recoil Mass

• $e^+ + e^- \rightarrow Z + H$

Z

Ζ

Η

 e^+

e

Recoil Mass :

 $(E_{ll} + E_H, \overrightarrow{p_{ll}} + \overrightarrow{p_H}) = \left(\sqrt{s}, \overrightarrow{0}\right) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

(ZH) Higgstrahlung process - ZII & Znunu at 240 GeV

• $e^+ + e^- \rightarrow Z + H$

 e^+

Recoil Mass :

 $(E_{ll} + E_H, \overrightarrow{p_{ll}} + \overrightarrow{p_H}) = \left(\sqrt{s}, \overrightarrow{0}\right) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

7

Events selection - ZII example at 240 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

Events categorization

We train a Neural Network to categorize the events in one of the signal channels :

 $H \rightarrow bb/cc/gg/ss/WW/ZZ/\tau\tau$

Znunu Confusion Matrix

Zll Confusion Matrix

Hbb -	93	0.14	1.1	0.0084	0.23	5.4	0
Hcc -	0.045	91	1.3	0.67	5.3	3.6	0
Hgg -	1.4	1.7	82	6.4	5.4	5.4	0
Hss -	0.0086	0.33	6.3	89	1.4	3.2	0.0049
HWW -	0.062	2	6.2	1.5	71	12	2.5
HZZ -	6.5	3.7	7	4.4	14	63	2.1
autau -	0	0	0	0.00084	0.18	0.062	1e+02
	Hbb Hcc Hgg Hss HWW HZZ Htautau Predicted label						

Training variables

Sufficient to get near perfect tautau labeling

Slightly improves performances in the ZZ cat.

365 GeV - introduction

Performed a "baseline" analysis of IIH (I=e,mu) and vvH channels at 365 GeV, to establish reference sensitivity (for further optimisation later)

- Same variables used for event selection at 240 GeV, loosening inefficient cuts (e.g. lepton momentum and recoil mass in IIH)
 - no attention paid so far to efficiently reconstruct ZZ fusion in eeH channel nor separate
 WW fusion in v_e v_e H channel
- Use isolation to make channels orthogonal and improve S/B (at least one isolated lepton with p > 40 GeV in IIH, no isolated leptons with p>1 GeV in vvH)
- Assume L=2.3/ab
- Train MVA to discriminate among different Higgs decays
- Fit each channel and combination to extract the **σ.BR** of the various decays

365 GeV - MC samples

Process	sigma [fb]	Ngen	Lgen [/fb]	Lgen/
vvHbb	31.430000000	1200000	38180	16.60
vvHcc	1.560000000	1200000	769231	334.44
vvHss	0.010790000	1200000	111214087	48353.95
vvHgg	4.418000000	1200000	271616	118.09
vvHtautau	3.385000000	1200000	354505	154.13
v∨HWW	11.610000000	900000	77519	33.70
vvHZZ	1.425000000	1200000	842105	366.13
eeHbb	4.303000000	1200000	278875	121.25
eeHcc	0.213600000	900000	4213483	1831.94
eeHss	0.001478000	1122800	759675237	330293.58
eeHgg	0.604900000	1200000	1983799	862.52
eeHtautau	0.463400000	1200000	2589555	1125.89
eeHWW	1.590000000	1100000	691824	300.79
eeHZZ	0.195100000	1200000	6150692	2674.21
mumuHbb	2.438000000	1000000	410172	178.33
mumuHcc	0.121000000	1100000	9090909	3952.56
mumuHss	0.000837100	1000000	1194600406	519391.48
mumuHgg	0.342600000	900000	2626970	1142.16
mumuHtautau	0.262500000	900000	3428571	1490.68
mumuHWW	0.900700000	1100000	1221272	530.98
mumuHZZ	0.110500000	800000	7239819	3147.74
qqHbb	19.220000000	1200000	62435	27.14
qqHcc	0.954000000	1100000	1153040	501.32
qqHss	0.006599000	1100000	166691923	72474.74
qqHgg	2.701000000	1100000	407257	177.06
ggHtautau	2.070000000	1200000	579710	252.04
ggHWW	7.101000000	1100000	154908	67.35
ggHZZ	0.871500000	1200000	1376936	598.66
ssHbb	10.80000000	1200000	111111	48.30
ssHcc	0.535900000	900000	1679418	730.18
ssHss	0.003708000	1200000	323624595	140706.34
ssHgg	1.518000000	1200000	790514	343.70
ssHtautau	1.163000000	1200000	1031814	448.61
ssHWW	3.989000000	1000000	250689	108.99
ssHZZ	0.489600000	1100000	2246732	976.84
ccHbb	8.407000000	900000	107054	46.54
ссНсс	0.417300000	1100000	2635993	1146.08
ccHss	0.002887000	1100000	381018358	165660.15
ccHgg	1.182000000	1200000	1015228	441.40
ccHtautau	0.905400000	1200000	1325381	576.25
ccHWW	3.107000000	1200000	386225	167.92
CCHZZ	0.381300000	1000000	2622607	1140.26
bbHbb	10.710000000	1200000	112045	48.71
bbHcc	0.531600000	1200000	2257336	981.45
bbHss	0.003678000	1200000	326264274	141854.03
bbHgg	1.506000000	1200000	796813	346.44
bbHtautau	1.153000000	1000000	867303	377.08
bbHWW	3.957000000	1200000	303260	131.85
bbHZZ	0.485700000	1000000	2058884	895.16
nuenueZ	126.240000000	1400000	11090	4.82
WW	10716.500000000	11754213	1097	0.47
ZZ	642.800000000	11470944	17845	7.75
Zqq	21414.900000000	6000000	280	0.12
Zee	1527.000000000	3000000	1965	0.85
Zmumu	2285.800000000	6600000	2887	1.25
ttbar	800.000000000	2700000	3375	1.46

eeH almost 2x larger than mumuH due to Z fusion contribution *vv*H receives large contribution from WW fusion

Cross sections predicted by Whizard

365 GeV - selection

ШH

k

$\nu\nu$ H

FCCAnalyses: FCC-ee Simulation (Delphes)

365 GeV - MVA training

• Use same variables as for 240 GeV analysis and same training setup

IIH

Purity categorization

Goal : increase analysis sensitivity by including purity categories in the
samplesbeforeafter

In our analysis we considered **3 purity categories**

We rebin all histograms to remove all empty bins in the fit to avoid non convergence

We use **Combine** to perform first ZII and Znunu fits independently

Systematics :

MCstats

5% background norm.

Both channels are studied for a number of purity cats i = 1, 2, 3

We perform then the **combination** of the two channels

240 GeV = 7.2ab-1 || 365 GeV = 2.3ab-1

Precision (%)	bb	сс	gg	SS	ww	ZZ	ττ
Z(II)H 240	0.83	4.84	2.65	287.06	2.08	16.03	4.93
Z(II)H 365	1.97	12.76	6.49	1424.84	6.11	51.07	15.02
Z(II)H 240+365	0.76	4.53	2.45	281.39	1.97	15.24	4.70
Z(<i>vv</i>)H 240	0.35	2.15	0.97	155.64	1.42	13.01	8.19
Z(<i>vv</i>)H 365	0.54	3.21	1.81	119.03	2.91	29.46	9.30
Z(<i>vv</i>)H 240+365	0.29	1.80	0.85	75.09	1.27	11.49	6.16
Z(II+ <i>vv</i>)H 240	0.32	1.96	0.91	136.24	1.17	9.83	4.22
Z(II+ <i>vv</i>)H 365	0.51	3.16	1.69	85.58	2.56	22.52	7.95
Z(II+vv)H 240+365	0.27	1.67	0.80	72.46	1.06	8.97	3.74

Results are WIP (especially for the ss cat that needs some possible correction)

Conclusion: next steps

Precision (%)	bb	сс	gg	SS	ww	ZZ	ττ
Z(II+vv)H 240+365	0.27	1.67	0.80	72.46	1.06	8.97	3.74

- Combination with **Z(qq)H(qq)**
- Fix remaining issues with some channels
- Improve purity categorisation using another optimization
- Analysis including **FV-violating** samples and **uu/dd** is **WIP**
- Try to **disentangle VBF from ZH** for couplings fit at 365 GeV