QCD & Lund Jet Plane studies at FCC-ee

L. Panwar (Postdoc), L. Delagrange (PhD),

R.C. Camacho Toro, B. Malaescu, L. Poggioli

contact email: <u>lata.panwar@cern.ch</u>

Jamboree FCC, 2nd July 2024

Lata Panwar, LPNHE, Paris, France

Introduction and motivation

- Analysis: Prospects of QCD studies related to jet formation and jet tagging methods at FCC-ee using Lund Jet Plane (LJP) representation
 - Aim to study the **sensitivity to** α_s **at FCC-ee**, probing of α_s for different energies and tests of the renormalization group equation (RGE) in QCD; complementary to the 3/2 Jet cross-section ratio study for α_s
 - Aim to study the potential **use of LJP for improving jet tagging**
- Why at FCC-ee?
 - provides a clean collision environment with high statistics for precise measurements
 - potential impact of this study for the optimization of detector parameters
- Samples: Centrally produced <u>Winter2023</u> Delphes samples for IDEA detector

Introduction and motivation

Benefits of Lund Jet Plane method (LJP):

- QCD jet formation involves perturbative and non-perturbative effects; presence of these effects impact the precision of any measurement based on jets
- LJP works as a handle to separate these effects in a 2D representation using angle (ΔR) and transverse momentum (k_t) of emissions within the jets and further opens a possibility to understand QCD behaviour separately for these perturbative and non-perturbative effects

How to extract α_s ?

- QCD process behind jet formation is related to strong coupling constant α_s
 - Running constant which varies with different energies
 - Impacts both jet shape (distribution of emissions inside jet)
 and normalization

Average density of emissions in LJP can be given as:

$$\rho(k_{\rm T}, \Delta R) \equiv \frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\ln(k_{\rm T}/\,{\rm GeV}) {\rm d}\ln(R/\Delta R)} \approx \frac{2}{\pi} C_{\rm R} \alpha_{\rm S}(k_{\rm T})$$

Where $C_R = \text{color factor}$

How to build Lund Jet Plane?

For "a" core and "b" emission branch

 $k_t \equiv p_{tb} \Delta R_{ab}$ $z \equiv p_{tb} / (p_{ta} + p_{tb})$

- Start with a jet and cluster it again to have angular order information of emissions (<u>JHEP 12 (2018) 064</u>)
- Decluster them in reverse (start with wide angle emission first)
- Within the iterative declustering, harder branch is always taken as core branch
- Fill a triangle plane of two Lund variables (k_t and ΔR) from core and emission

NOTE:

- Angular ordered Cambridge/Aachen (C/A) declustering (following the theoretical proposal) depends on ΔR in (y, φ) plane used for LHC studies (given in <u>backup</u>)
- It is more accurate to perform ΔR-based declustering in the (θ, φ) plane for FCC-ee.
- ΔR_{ab} = angle of emission **b** wrt to core **a**
- k_{t} = transverse momentum of **b** wrt **a**
- z = momentum fraction taken by b

How to build Lund Jet Plane?

For R=1.5 jets clustered with k_t algorithm (Kt15)

 $ee \rightarrow \textbf{Z} {\rightarrow} \, uu/dd \; \textcircled{0} \textbf{91} \; \textbf{GeV}$

Emissions from the core branches

Lata Panwar, LPNHE, Paris, France

How to build Lund Jet Plane?

(both plots represent the same jet w/ and w/o log scale)

Lata Panwar, LPNHE, Paris, France

Jet

Recap from Annecy workshop

- Presented preliminary LJP representation for jets clustered with different jet algorithms
- First look at the LJP for possibility of jet tagging for b-jets and light quark jets (and gluon jets) at FCCee

- $E_{jet} > 10 \text{ GeV}$ and $N_{jets} >= 2$; selection efficiency > 99%
- LJP representations for two leading p_{τ} jets

<u>slides</u>

Lata Panwar, LPNHE, Paris, France

Follow up from workshop

From the workshop we had some new ideas for analysis

For α_s scan, use Madgraph (MG@NLO) to generate samples
 (Need to move from Pythia (LO generator) to NLO generator)

2. Possibility of using ee dedicated jet clustering/declustering algorithm

Follow up from workshop

- From the workshop we had some new ideas for analysis
- 1. For α_s scan, use **Madgraph** (**MG@NLO**) to generate samples

(Need to move from Pythia (LO generator) to NLO generator)

- a. How to vary α_s ?
- b. Validation of α_s effect at generator level and after Delphes simulation

2. Possibility of using **ee dedicated jet clustering/declustering algorithm**

Sample generation (Madgraph+Pythia+Delphes)

- <u>Presentation</u> from G. Stagnitto for usage of MG@NLO for FCCee-dedicated studies
- Appropriate for α_s studies since generates events at NLO level
- **Technical challenge:** how to generate samples with different α_s values
 - Got help from experts (thanks to M. Selvaggi & D. Enterria) to understand the α_s propagation in event generation
 - Generate LHE events at Z-pole $\sqrt{s} = 91.118$ GeV and validate them
 - Generated level LHE events are further simulated using Pythia+Delphes
 - Study ongoing
 - More details are in backup

Validation studies-LHE level

Validation studies-LHE level

Validation studies:LHE level

- Distributions are shown for different α_s values and are shape normalized
- No selection at generator level
- Other distributions are in backup

Follow up from workshop

From the workshop we had some new ideas for analysis

1. For α_s scan, use **MG@NLO** to generate samples

- 2. Possibility of using **ee dedicated jet clustering/declustering algorithm**
 - a. Include ee generalised-kt (ee_gen_kt) algorithm for jet clustering
 - Following suggestion from G. Salam and A. Karlberg, work on jet declustering using EECambridgePlugin

(Similar to Cambridge/Aachen (C/A) but does $\Delta R(\theta, \phi)$ -based declustering)

ee generalised k,-based jet clustering

Better m_{jj} resolution with θ -based k_t algorithms wrt $\Delta R(y, \phi)$ -based k_t algorithms

4.5 Generalised k_t algorithm for e^+e^- collisions arXiv:1111.6097

FastJet also provides native implementations of clustering algorithms in spherical coordinates (specifically for e^+e^- collisions) along the lines of the original k_t algorithms [24], but extended following the generalised pp algorithm of [14] and section 4.4. We define the two following distances:

$$d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{(1 - \cos \theta_{ij})}{(1 - \cos R)},$$
(9a)

$$d_{iB} = E_i^{2p}, \tag{9b}$$

for a general value of p and R. At a given stage of the clustering sequence, if a d_{ij} is smallest then i and j are recombined, while if a d_{iB} is smallest then i is called an "inclusive jet".

For values of $R \leq \pi$ in eq. (9), the generalised $e^+e^- k_t$ algorithm behaves in analogy with the ppalgorithms: when an object is at an angle $\theta_{eX} > R$ from all other objects X then it forms an inclusive jet. With the choice p = -1 this provides a simple, infrared and collinear safe way of obtaining a cone-like algorithm for e^+e^- collisions, since hard well-separated jets have a circular profile on the 3D sphere, with opening half-angle R. To use this form of the algorithm, define

JetDefinition jet_def(ee_genkt_algorithm, R, p);

Lata Panwar, LPNHE, Paris, France

Angular order-based jet declustering in (θ , ϕ) plane

- Use ee-dedicated Cambridge algorithm (EECambridgePlugin); Implemented in code with help from fastjet experts (link)
- Setup is in place; only tested for few **ee**→ **Z**→ **light jets** events
 - 5.4 Plugins for e^+e^- collisions 5.4.1 Cambridge algorithm The original e^+e^- Cambridge [22] algorithm is provided as a plugin: #include "fastjet/EECambridgePlugin.hh" // ... EECambridgePlugin (double ycut); This algorithms performs sequential recombination of the pair of particles that is closest in angle, except when $y_{ij} = \frac{2\min(E_i^2, E_j^2)}{Q^2}(1 - \cos \theta) > y_{cut}$, in which case the less energetic of *i* and *j* is labelled a jet, and the other member of the pair remains free to cluster.

```
To access the jets, the user should use the inclusive_jets(), i.e. as they would for the majority of the pp algorithms.
```

Note: Study ongoing (more in backup)

Summary and next steps

- To our knowledge it is first study which looks at jet substructure at FCC-ee
 - Motivated by the study of the sensitivity to α_s and test of RGE
 - Motivated by studying the jet tagging using LJP (For tagging heavy flavour and quark/gluon jets)
 - Plan to explore the sensitivity of the reconstructed LJP to:
 - α_s by doing α_s -scan; (explore both Primary and <u>Secondary LJP</u>)
 - Optimization of the detector parameters
- Present updates from feedback received from last FCC workshop in Annecy
 - Validated Madgraph sample generation with different α_s values at generator (LHE) level
 - Study ongoing for α_s impact on reconstructed jets (From Delphes)
 - Also, switched to ee-dedicated jet clustering/declustering algorithms (implemented within code and performed preliminary checks)
- Special thanks to M. Selvaggi, P. Azzi and E. Perez for all their support

BACKUP

Expect factor of 10 improvement in precision with FCCee

Recent Lund Jet Plane based measurements

• LJP studies at LHC \sqrt{s} = 13 TeV, following recent theoretical proposal (<u>JHEP 12 (2018) 064</u>)

arXiv 2111.00020

- These studies measure the lund plane density for charged particles jets
- We are interested in following the same for FCC-ee environment

Lata Panwar, LPNHE, Paris, France

arXiv 2004.03540

CMS-PAS-SMP-22-007

LJP representation for light and heavy flavor jets at higher energy

- For process ee→ Z→bb and ee→Z→uu/dd (+ gluons from quark radiation) @91 GeV ;
 #events = 1 M
- Selection: $E_{jet} > 10$ GeV, $N_{jets} >= 2$; selection efficiency > 99%; use two leading p_T jets
- Difference in the large ln(R/ΔR) region shows that light jets are more collimated than heavy flavour jets; working on further understanding in more detail

 $k_t = p_{T,emission}^*$ sin (ΔR (θ, φ))

Declustering with EECambridgePlugin

 $k_t = p_{T,emission}^* sin (ΔR (y, φ))$

Declustering with C/A

ee_genkt clustered jets with R=1.5, E_{iet} > 10 GeV and #jets > 1 (for leading jets)

Angular order-based jet declustering in (θ , ϕ) plane

Samples generation with Madgraph

./bin/mg5_aMC define q = u d u~ d~ generate e+ e- > Z > q q [QCD] display processes display diagrams output myDir launch

w/o pythia fragmentation and hardronisation

Config file to change the alphaS value: madgraph/interface/common_run_interface.py (Set alphaS for nn23nlo pdf, nn23nlo is default pdf in the cards)

Process card: /afs/cern.ch/user/l/lpanwar/public/Zqq_aS0p117/Cards/proc_card_mg5.dat

Run card:

/afs/<u>cern.ch/user/l/lpanwar/public/Zqq_aS0p117/Cards/run_card.dat</u> Change beam energy 45.559 GeV and set lpp1 and lpp2 as "0" for ee collision

Example Output of launch command:

/afs/cern.ch/user/l/lpanwar/public/Zqq_aS0p117/out.log

Pythia+Delphes simulation

```
Random:setSeed = on
Main:timesAllowErrors = 5
                                  ! how many aborts before run stops
Main:numberOfEvents = 10000
PDF:lepton = on
                                                                          Within FCCAnalysis framework:
! 2) Settings related to output in init(), next() and stat().
                                                                          source /cvmfs/fcc.cern.ch/sw/latest/setup.sh
Init:showChangedSettings = on        ! list changed settings
Init:showChangedParticleData = off ! list changed particle data
Next:numberCount = 10000
                                    ! print message every n events
                                                                          DelphesPythia8 EDM4HEP
Next:numberShowInfo = 1
                                  ! print event information n times
                                  ! print process record n times
Next:numberShowProcess = 1
                                                                          delphes-3.5.1pre05/cards/delphes card IDEA.
                                  ! print event record n times
Next:numberShowEvent = 0
                                                                          tcl edm4hep output config.tcl
Beams: idA = 11
                                ! first beam, e+ = 11
                                                                          p8 ee Z Zgg ecm91 LHE.cmd out.root
Beams: idB = -11
                                 ! second beam, e^- = -11
! 3) Tell Pythia that LHEF input is used
                                                                          Note: Jet clustering setting is changed in
Beams:frameType
                           = 4
                                                                          delphes card
Beams:setProductionScalesFromLHEF = off
Beams:LHEF = Zqq_aS0p1_jetR0p5_100k.lhe
                                                                          Jet algorithm numbering labels differ from
! 4) Settings for the event generation process in the Pythia8 library.
PartonLevel: ISR = on
                                  ! initial-state radiation
                                                                          fastjet
PartonLevel:FSR = on
                                  ! final-state radiation
! 5) Hard process : production at Z-pole
Beams:eCM = 91.118 ! CM energy of collision
WeakSingleBoson:ffbar2ffbar(s:gmZ) = on
```


 $p_{Z} = p_{q'} + p_{q} + p_{g}$ ## 3-momentum conservation

Since Z is produced at rest

 $0 = p_q + p_q + p_g$ $\Rightarrow -p_{q} = p_{q} + p_{q}$ $\Rightarrow p_{a'}^2 = (p_a + p_a)^2$ $\Rightarrow p_{q'}^2 = p_{q}^2 + p_{q}^2 + 2p_{q}p_{q}\cos\theta$ $\Rightarrow p_{a'}^2 - p_{a'}^2 - p_{a'}^2 = 2p_a p_a \cos\theta$ $\Rightarrow \cos\theta = (p_a^2 - p_a^2 - p_a^2) / 2p_a p_a$ When gluon is very soft $p_a \sim 0$ and $p_{a'}^2 \sim p_a^2 \Rightarrow \theta \sim \pi/2$