

Measurements of the ZH cross section at the Future e⁺e⁻ Circular Collider at 240 & 365 GeV

Kevin Dewyspelaere

Under the supervision of Gregorio Bernardi

Jamboree FCC 2024 July 2nd, 2024

APC-Paris, Université Paris Cité, CNRS/IN2P3

Contents

Comparative analysis between 240 and 365 GeV

Boosted decision Tree Algorithm

> Fitting strategy

Introduction

Future circular collider project: feasibility study for estimations on the uncertainties on cross-section of the ZH process and Higgs mass (125 GeV)

Signal:
$$e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$$

 $e^+e^- \rightarrow ZH \rightarrow e^+e^- + X$

Z decaying leptonically and use of the recoil mass method: $M_{recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$

- **Uncertainties** at \sqrt{s} = 240 GeV:
 - Cross-section: 0.60 %
 - Higgs mass: 4.0 MeV
- Goal: Measurement of the ZH cross-section at 365 GeV following 240 GeV methodology

 2.175×10^{6} HZ at 240 GeV + 4.26×10^{5} HZ at 365 GeV The run at 365 GeV provides 20% more ZH events at 0.75 ab⁻¹ during 4 years (total 3.0 ab⁻¹)

	Z, years 1-2	Z , later	WW, years 1-2	WW, later	ZH		tī
$\sqrt{s}(\text{GeV})$	88,91,	94	157,16	53	240	340 - 350	365
Lumi / IP	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	3.6	0.36	0.75
Run time (year)	2	2	2	0	3	1	4
Number of events	umber of events $6 \times 10^{12} Z$		$2.4 \times 10^8 \mathrm{WW}$		$\begin{array}{c} 2.175\times10^{6}\mathrm{HZ} \\ +6.75\times10^{4}WW \rightarrow H \end{array}$	$\begin{array}{c} 1.9\times10^{6}tt\\ +4.26\times10^{5}\mathrm{HZ}\\ +1\times10^{5}WW\rightarrow H\end{array}$	

Monte Carlo samples and events selection

Using Fast simulation **DELPHES**:

Signal:

- $Z(\ell^+\ell^-)H$ (Whizard/Pythia)

- **Backgrounds**:
 - W^+W^- (Pythia) - e^+e^-Z (Whizard/Pythia) - ZZ (Pythia) - $Z/\gamma \rightarrow \mu^+\mu^-$ (Whizard/Pythia)
- ➤ Rare backgrounds:
 - Z(qq) (Pythia) - $Z(\tau^+\tau^-)H$ (Whizard/Pythia) - $Z(\nu\nu)H$ (Whizard/Pythia) - $\gamma\gamma \rightarrow \mu^+\mu^-$ (Whizard/Pythia) - $\gamma\gamma \rightarrow \tau^+\tau^-$ (Whizard/Pythia)

- Events basic selection:
- 1. Preselection:
 - Select at least 2 leptons with opposite sign
 - One lepton required to be isolated
- 2. $m_{l^+l^-} \in [86, 96] \text{ GeV}$
- 3. $p_{l^+l^-} \in [20, 70] \text{ GeV}$ (> 20 GeV at 365 GeV)
- 4. $m_{recoil} \in [120, 140] \text{ GeV}$

365

GeV

240

GeV

Comparison 240/365 GeV with Preselection Cuts

FCCAnalyses: FCC-ee Simulation (Delphes)

Z leptonic recoil [GeV]

Differences

- Luminosity is **3.0** ab⁻¹ at \sqrt{s} =**365 GeV** and **10.8** ab⁻¹ at \sqrt{s} =**240 GeV**
- Signal yields ~5 times lower for µ⁺µ[−] corresponding to lower luminosity and cross-section
- Shape of the background
- Signal peak with **lower resolution** but significantly less background at 365 GeV

Comparison mrecoil distribution at 365 GeV (top) and 240 GeV (bottom) for the $\mu^+\mu^-$ and e^+e^- channel with preselection cuts

Comparison 240/365 GeV with Preselection Cuts

FCCAnalyses: FCC-ee Simulation (Delphes)

Z leptonic recoil [GeV]

Zoom between 80 and 160 GeV

 \succ

- Luminosity is **3.0** ab⁻¹ at \sqrt{s} =**365 GeV** and **10.8** ab⁻¹ at \sqrt{s} =**240 GeV**
- Signal yields 5 times lower for µ⁺µ⁻ corresponding to lower luminosity and cross-section
- Shape of the background
- Signal peak with **lower resolution** but significantly less background at 365 GeV

Comparison mrecoil distribution at 365 GeV (top) and 240 GeV (bottom) for the $\mu^+\mu^-$ and e^+e^- channel with preselection cuts

DEWYSPELAERE Kevin

6

365 GeV ⇒

240 GeV

Invariant Mass and Recoil Mass distributions

Z leptonic recoil [GeV]

Events basic selection:

 \succ

1.

2.

3.

4.

 \triangleright

 \succ

Pre-selection (2 leptons opposite sign) $m_{l^+l^-} \in [86, 96] \text{ GeV}$ $p_{l^+l^-} \in [20, 70] \text{ GeV}$ (>20 for √s=365 GeV) $m_{recoil} \in [120, 140] \text{ GeV}$

WW negligible at \sqrt{s} =365 GeV The cut on the **mass** is **removing them**

- Resolution 2.3 times wider at \sqrt{s} =365 GeV
- Significance (S/sqrt(S + B)) is ~26 at \sqrt{s} =365 GeV, vs. ~64 at \sqrt{s} =240 GeV for $\mu^{+}\mu^{-}$ and ~27 vs ~47 for e⁺e⁻ channel with the basic selection cuts.

Missing momentum

The missing momentum is defined by the negative vectorial sum of the momenta of all reconstructed particles:

$$\vec{p}_{miss} = -\sum_{n_{part}} \vec{p}_{rec}$$

- θmissing is the polar angle of the missing momentum vector with respect to the beam axis
- > The requirement $|\cos \theta_{\text{missing}}| < 0.98$ is used for the mass analysis only, which means that we are removing events mostly collinear to the beam axis

Cos Omissing selection cut & Recoil mass distribution

 $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$

no costhetamise

√s = 365.0 GeV

Signal integral=6189.7

Significance=26.1

Background integral=49966.0

-0.5

√s = 365.0 GeV

 $700 \vdash e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$

Backaround integral=4878.5

Signal integral=5754.4

Significance=55.8

 $L = 3.0 \ ab$

Baseline

 $L = 3.0 \, ab$

sel Basi

10

10

-1

800 F GeV

600

500

400

300

200

100

Z leptonic recoil [GeV]

120

0.40

events

FCCAnalyses: FCC-ee Simulation (Delphes)

131

3205

26652

4873

6189

e⁺(e)Z

Z/γ→ μ⁺μ

W⁺W

Rare

γγμμ*

ZZ

0.5

COS_{missinc}

e+(e)Z

W⁺W

Rare

γγμμ+

ZZ

 $Z/\gamma \rightarrow \mu^+\mu^-$

Z(µ⁺µ⁺)H

____Z(μ⁻μ⁺)⊢

- The requirement $|\cos \theta_{\text{missing}}| < 0.98$ \succ used for mass analysis only
- \succ This requirement is removing a lot of background concentrated in the last bins
- Significance (S/sqrt(B)) is ~56 at 365 \succ **GeV**, vs. **~125** at **240 GeV** for μ⁺μ⁻
- \succ Introduces **biases** on the Higgs decay modes that break the model **independence**, which is not important for mass analysis

Cos θ missing distribution at 240/365 GeV for $\mu^{+}\mu^{-}$ channel with baseline selection cuts

DEWYSPELAERE Kevin

122 124 126 128 130 132 134 136 138 Z leptonic recoil [GeV]

FCCAnalyses: FCC-ee Simulation (Delphes)

307

Boosted Decision Tree

- Using a Machine learning algorithm to separate signal and background, a Boosted Decision Tree (BDT)
- > The BDT allows for a **model independent** analysis
- Training_variables for BDT:

Variable	Description				
$p_{\ell^+\ell^-}$	Lepton pair momentum				
$\theta_{\ell^+\ell^-}$	Lepton pair polar angle				
$m_{\ell^+\ell^-}$	Lepton pair invariant mass				
D l _{leading}	Momentum of the leading lepton				
$\theta_{l_{\text{leading}}}$	Polar angle of the leading lepton				
D _{l subleading}	Momentum of the subleading lepton				
9 l subleading	Polar angle of the subleading lepton				
$\pi - \Delta \phi_{\ell^+ \ell^-}$	Acoplanarity of the lepton pair				
$\Delta \theta_{\ell^+\ell^-}$	Acolinearity of the lepton pair				

FCCAnalyses: FCC-ee Simulation (Delphes) s = 240.0 GeV 107 e⁺(e) L = 10.8 ab W⁺W $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ Rare 17426 Baseline no costhetamiss γγμμ 99429 Signal integral=53161.7 $Z/\gamma \rightarrow \mu^{+}\mu$ Background integral=630838.6 Significance=64.3 ZZ 10⁵ $Z(\mu^{+}\mu^{+})$ 10 10 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

 \succ

 \succ

240 GeV

cross-section value

FCCAnalyses: FCC-ee Simulation (Delphes)

This **BDT score** is **fitted** to measure the **ZH**

BDT score comparison at 240 GeV (left) and 365 GeV (right) for $\mu^{+}\mu^{-}$ channel with basic selection cuts

BDT Score

Systematic uncertainties

ZH, $\sqrt{s} = 365 \text{ GeV}$, 3.0 ab⁻¹ FCC-ee Simulation 000 02 $- \mu^+\mu^-$ - BES Nominal Events / - BES Up - BES Down 600 400 200 Ratio 0.95 0.9 0.6 0.9 **BDT Score**

Effect of the beam energy spread uncertainty (± 10 %) on the Z(e, e)H recoil mass distribution

- Beam energy spread: Uncertainty coming from the accelerator equipment, spread of the nominal gaussian distribution of the beam. 1% at 240 GeV and 10% at 365 GeV.
- Centre-of-mass (√s): Uncertainty on the centre-of-mass energy which is expected to be known at the 2 MeV level for 240 and 365 GeV
- Lepton momentum scale: Uncertainty on the momentum of leptons measured assumed to be 10⁻⁵ for 240 and 365 GeV

 \succ

	ZH				
\sqrt{s} energy	240	365			
BES	0.089%	0.41%			
\sqrt{s} unc.	0.0042%	0.002%			
μ momentum	0.0002%	0.0002%			
e momentum	0.0002%	0.0002%			
Stat only	0.59%	1.42%			
Syst only	0.089%	0.41%			

Greater impact of systematics at 365 GeV compared with analysis at 240 GeV c.o.m

Table of systematic uncertainties of the analysis at 240 and 365 GeV centre of mass

µ⁺µ⁻ and e⁺e⁻ statistical and systematic uncertainties on cross-section measurement at √s=240 & 365 GeV

Likelihood scan of the ZH cross section at $\sqrt{s}=240$ GeV & 365 GeV

- By fitting and combining the two channels, we obtain the cross-section (here it is normalized to the SM) with its statistical and systematic uncertainties
- The ratio between the measured cross-section and expected SM value
 - **1.42%** Statistical uncertainties at \sqrt{s} =**365 GeV** compared to **0.59%** at \sqrt{s} =**240 GeV**
 - **1.48%** Stat+Syst uncertainties at \sqrt{s} =**365 GeV** compared to **0.60%** at \sqrt{s} =**240 GeV**

12

Expected uncertainties on the Higgs boson mass and ZH cross section at the Future e*e- Circular Collider, at 240 & 365 GeV

Gregorio Bernardi¹, Kevin Dewyspelaere¹, Jan Eysermans², Ang Li¹

1,APC-Paris, Université Paris Cité, CNRS/IN2P3 2, MIT, Cambridge

- Motivation & Context

-Higgs mass: Reduce the current ~100 MeV to reach a value close to the natural width of the Higgs boson (4 MeV) which is needed to measure the Higgs to electron Yukawa coupling at vi=Higgs mass. - 2H cross section: Model-independent analysis to observe SM deviations and use it as a "standard candle" for Higgs width

 - ZH cross section: Model-independent analysis to observe SM deviations and use it as a "standard candle" for Higgs wide Context:

At the Future e'e' Circular Collider, a long data-taking period is planned at the Z-Higgs (tt) production threshold, with $\sqrt{s=240}$ GeV (365 GeV). We expect over 1 million (300,000) ZH events. Using the recoil mass technique for e'e and $\mu^{c}\mu^{c}$ final states, we estimate the uncertainties on the Higgs mass and the ZH cross section which can be reached at $\sqrt{s=240}$ GeV.

Poster presentation

- Poster presentation during the High energy Physics conference (ICHEP) at Prague in july 2024
- ➢ Presentation of the main results for the Higgs mass and the ZH cross section measurement at √s=240 & 365 GeV

Link: https://ichep2024.org/

Conclusion

14

\sqrt{s}	significance						
	$240 \ (10.8 \ ab^{-1})$	$365 (3.0 \ ab^{-1})$	$365 (10.8 \ ab^{-1})$				
$\mu^+\mu^-$	64.3	26.1	49.52				
e^+e^-	47.4	27.0	51.23				
	Statistical uncertainties						
Combined	0.592%	1.423%	0.750%				
	Stat+Syst uncertainties						
Combined	0.599%	1.482%	0.781%				

- With the same luminosity, we have 1.3 times less significance for µ⁺µ⁻ & 1.1 times more for e⁺e⁻ at 365 GeV compared to 240 GeV, because the background is smaller for e⁺e⁻
- 2.3 times less resolution for each channel at 365 GeV
- Stat+Syst uncertainties with 10.8 ab⁻¹ would be **0.781%** by combining channels at 365 GeV
- Analysis is statistically limited. Beam energy spread (BES) is the dominant systematic uncertainty for ZH cross section analysis

Thank you for your attention

15

Boosted Decision Tree

- Using a Machine learning algorithm to separate signal \succ and **background**, a Boosted Decision Tree (BDT)
- \succ The BDT allows for a **model independent** analysis
- Training variables for BDT: \succ

Variable	Description				
$\rho_{\ell^+\ell^-}$	Lepton pair momentum				
$\theta_{e^+e^-}$	Lepton pair polar angle				
$n_{\ell^+\ell^-}$	Lepton pair invariant mass				
⁰ l _{leading}	Momentum of the leading lepton				
l _{leading}	Polar angle of the leading lepton				
l _{subleading}	Momentum of the subleading lepton				
l _{subleading}	Polar angle of the subleading lepton				
$\pi - \Delta \phi_{\ell^+ \ell^-}$	Acoplanarity of the lepton pair				
$\Delta \theta_{\ell^+\ell^-}$	Acolinearity of the lepton pair				

BDT Score comparison between 365 and \succ 240 GeV

This **BDT score** is **fitted** to measure the **ZH** \succ cross-section value

BDT score comparison at 240 GeV (left) and 365 GeV (right) for $\mu^+\mu^-$ channel with basic selection cuts

FCCAnalyses: FCC-ee Simulation (Delphes)

e⁺(e)Z

 $Z/\gamma \rightarrow e^{\gamma}$

- Z(e e+)H

W*W

Rare

yyee

ZZ

0.8

BDT Score

Invariant Mass and Recoil Mass distributions

Z leptonic recoil [GeV]

Events basic selection:

 \succ

1.

2.

3.

4.

 \succ

Z leptonic recoil [GeV]

Pre-selection (2 leptons opposite sign) $m_{l^+l^-} \in [86, 96] \text{ GeV}$ $p_{l^+l^-} \in [20, 70] \text{ GeV}$ (>20 for √s=365 GeV) $m_{recoil} \in [120, 140] \text{ GeV}$

WW negligible at \sqrt{s} =365 GeV The cut on the mass is removing them

- Resolution 2.3 times wider at \sqrt{s} =365 GeV
 - Significance (S/sqrt(S + B)) is ~26 at \sqrt{s} =365 GeV, vs. ~67 at \sqrt{s} =240 GeV for $\mu^{+}\mu^{-}$ and ~27 vs ~47 for e⁺e⁻ channel with the basic selection cuts.

365

BDT score for $\mu^{+}\mu^{-}$ and $e^{+}e^{-}$ at 365/240 GeV

Cut used:

- two leptons
- opposite sign
- one lepton required to be isolated
- cut on Z mass [86,96]
- cut Z momentum > 20 GeV

240 ⇒

Thesis project

⇒ FCC indirect probe higgs self-coupling measurement

Next Leading Order vertex corrections of the ZH process

as a function of the centre-of-mass energy

- As an extension of my **internship**, I will work on an **indirect** method to measure the **Higgs self-coupling** in the **FCC feasibility study**
- Using the same Recoil mass method and by considering Next-to-leading order diagrams, the curve gives the impact of the self-coupling diagrams on the cross-section as a function of the centre-of-mass energy relative to SM rate
- By comparing 240 & 365 GeV centre-of-mass analyses we will be able to extract the self-coupling parameter
- Because the Z leptonic decay is statistically limited, we will consider other Z decay channels such as bb, cc quarks... and combine them

Back up slides: Higgs potential

- A scalar field, the Higgs field present throughout the universe, with a non-zero vacuum expectation value
- Fundamental matter particles acquire mass through their interaction with the Higgs field
- Measurement of λ is crucial to reconstruct the Higgs potential and therefore test the Higgs mechanism
- "Mexican" potential, vacuum expectation
 values leads to spontaneous symmetry breaking

20

Back up slides: Future circular collider

An Higgs factory, 1 Million events production at 240 GeV and 200,000 events at 365 GeV centre-of-mass. Expected precision on Higgs couplings to SM particles at the sub-percent level.

- > FCC-ee will provide a first measurement of the Higgs self-coupling to ~30%
- > Different center-of-mass energies: 91 GeV for Z, 160 GeV for WW, 240 GeV for Higgs and 365 GeV for top pairs
- > The FCC-ee tunnel will be re-used for FCC-hh, proton-proton collisions at 100 TeV in the c-o-m.
- Study on Higgs properties, search for Dark matter, Electroweak, Top and Heavy Flavour physics.

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	CEPC ₂₅₀	FCC-ee2	40+365		
Lumi (ab ⁻¹)	3	2	1	3	5	5 ₂₄₀	$+1.5_{365}$	+ HL-LHC	
Years	25	15	8	6	7	3	+4		
$\delta\Gamma_{ m H}/\Gamma_{ m H}~(\%)$	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1	Comparison of Higgs boson
$\delta g_{\rm HZZ}/g_{\rm HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16	couplings expected from FCC-ee
$\delta g_{\rm HWW}/g_{\rm HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40	data and compared to those from
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56	
$\delta g_{ m Hec}/g_{ m Hec}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18	пс-спс
$\delta g_{ m Hgg}/g_{ m Hgg}~(\%)$	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90	
$\delta g_{ m H\tau\tau}/g_{ m H\tau\tau}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67	
$\delta g_{ m Hmm}/g_{ m H\mu\mu}~(\%)$	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8	
$\delta g_{\rm H\gamma\gamma}/g_{\rm H\gamma\gamma}$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3	
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	-	_	-	-	-	3.1	
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0	DEWVSPEL AERE Kavin

Back up slides: Boosted decision tree

Graphical representation of a decision tree. Blue rectangles are internal nodes with their associated splitting criterion; leaves are terminal nodes with their purity.

- Decision trees: it consists in extending a simple cut-based analysis by continuing to analyse events that fail a particular criterion. Many, if not most, events do not have all characteristics of either signal or background
- Tree boosting: Boosting is a method of combining many weak learners (trees) into a strong classifier.
 We are giving weight to trees relative to their accuracy.
- After each iteration each data sample is given a weight based on its misclassification. The more often a data sample is misclassified, the more important it becomes.

Back up slides: b-jet identification

- A jet is defined as a collimated spray of stable particles arising from the fragmentation and hadronisation of a parton(quark or gluon) after a collision.
- **Goal:** discriminate b-jets vs c-, light quark or gluon jets
- > Tracking information such as impact parameter or secondary/tertiary vertices
- > Use of algorithm such as MV2 for boosted decision tree based and DL1 for deep neural network
- Measurement of b-tagging efficiencies using transverse momentum
- Charged particles are governed by helicoidal trajectories due to the influence of the solenoidal magnetic field

Back up slides: Higgs mass analysis

- A
- The missing momentum is defined by the negative vectorial sum of the momenta of all reconstructed particles: $\vec{p}_{miss} = -\sum_{n=1}^{n} \vec{p}_{rec}$
- Omissing is the polar angle of the missing momentum vector with respect to the beam axis
- The requirement |cos θmissing| < 0.98 is used for the mass analysis only, which means that we are removing events mostly collinear to the beam axis
- > This cut is used only for the mass analysis
- Significance (S/sqrt(B)) is ~49 at 365 GeV, vs.
 ~102 at 240 GeV for µ⁺µ[−] and ~44 vs ~84 for e⁺e[−] channel

Back up slides: Considering HZZ coupling

In the case of a ZH cross-section measurement and by considering NLO diagrams, we can constrain a linear combination of the deviations of the two couplings:

 $\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$

Combinations of precision associated production measurements at different center of mass energies may be used to determine ellipse-plot constraints on the combined parameter space of δZ and δh

Indirect elliptic constraints possible plot for the two coupling parameters δh and δz

Back up slides: Systematic uncertainties

Effect of the beam energy spread uncertainty (± 10 %) on the Z(e, e)H recoil mass distribution

- Beam energy spread: Uncertainty coming from the accelerator equipment, spread of the nominal gaussian distribution of the beam. 1% at 240 GeV and 10% at 365 GeV.
- Centre-of-mass (√s): Uncertainty on the the centre-of-mass energy which is expected to be known at the 2 MeV level for 240 and 365 GeV
- Lepton momentum scale: Uncertainty on the momentum of leptons measured assumed to be 10⁻⁵ for 240 and 365 GeV

Back up slides: The Rocinante detector

proposed geometries

- Rocinante detector made of 12 crystals of barium fluoride (BaF2)
- Improve the geometry by adding light protection teflon and aluminium cover
- Include Lanthanum Bromide (LaBr3) more efficient modules
- I used Geant4 simulations to study 5 geometries to keep the gamma detection efficiency as close as possible to the original
- We found that the C geometry was the best because it retained a similar efficiency to the original and did not have the geometric drawbacks of the others.
- Finally I also aimed at finding a new geometry in order to widen the hole without cutting crystals

Uncertainty breakdown on cross-section measurement at \sqrt{s} =240 & 365 GeV

28