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➢ Comparative analysis between 240 and 365 GeV

➢ Boosted decision Tree Algorithm

➢ Fitting strategy 
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➢ Uncertainties at √s = 240 GeV: 
- Cross-section: 0.60 %
- Higgs mass: 4.0 MeV

➢ Goal:  Measurement of the ZH 
cross-section at 365 GeV following 
240 GeV methodology

➢ Future circular collider project: feasibility study for estimations 
on the uncertainties on cross-section of the ZH process and 
Higgs mass (125 GeV)

➢ Signal:     

➢ Z decaying leptonically and use of the recoil mass method:

The run at 365 GeV provides 
20% more ZH events at 0.75 ab⁻¹ 
during 4 years (total 3.0 ab⁻¹)

at 240 GeV
at 365 GeV 



Monte Carlo samples and events selection
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➢ Signal:

-                                    (Whizard/Pythia)

➢ Backgrounds:

-                                    (Pythia)

-                                    (Whizard/Pythia)

-                                    (Pythia) 

-                                    (Whizard/Pythia)

➢ Rare backgrounds:

-                                  (Pythia)

-                                  (Whizard/Pythia)
 

-                                  (Whizard/Pythia)

-                                  (Whizard/Pythia)

-                                  (Whizard/Pythia)

➢ Events basic selection:

1. Preselection: 
- Select at least 2 leptons with opposite sign

- One lepton required to be isolated
-

2.
3.                                         ( > 20 GeV at 365 GeV)
4.

4
Using Fast simulation DELPHES:
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Comparison mrecoil distribution at 365 GeV 
(top) and 240 GeV (bottom) for the μ⁺μ⁻ and 

e⁺e⁻ channel with preselection cuts

Comparison 240/365 GeV with Preselection Cuts

➢ Differences

- Luminosity is 3.0 ab⁻¹ at √s=365 GeV and 
10.8 ab⁻¹ at √s=240 GeV

- Signal yields ~5 times lower for μ⁺μ⁻ 
corresponding to lower luminosity and 
cross-section 

- Shape of the background

- Signal peak with lower resolution but 
significantly less background at 365 GeV

365 
GeV
⇒

240
GeV 
⇒

μ⁺μ⁻ e⁺e⁻
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➢ Zoom between 80 and 160 GeV

- Luminosity is 3.0 ab⁻¹ at √s=365 GeV and 
10.8 ab⁻¹ at √s=240 GeV

- Signal yields 5 times lower for μ⁺μ⁻ 
corresponding to lower luminosity and 
cross-section

- Shape of the background

- Signal peak with lower resolution but 
significantly less background at 365 GeV

Comparison mrecoil distribution at 365 GeV 
(top) and 240 GeV (bottom) for the μ⁺μ⁻ and 

e⁺e⁻ channel with preselection cuts

Comparison 240/365 GeV with Preselection Cuts

μ⁺μ⁻ e⁺e⁻
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365 
GeV
⇒

240
GeV 
⇒



DEWYSPELAERE Kevin

Invariant Mass and Recoil Mass distributions 

➢ WW negligible at √s=365 GeV
- The cut on the mass is removing them

➢ Resolution 2.3 times wider at  √s=365 GeV

➢ Significance (S/sqrt(S + B)) is ~26 at √s=365 
GeV, vs. ~64 at √s=240 GeV for μ⁺μ⁻ and 
~27 vs ~47 for e⁺e⁻ channel with the basic 
selection cuts.

➢ Events basic selection:

1. Pre-selection (2 leptons opposite sign)
2.
3.                                          
4.

Invariant
Mass

Distribution
⇒

Recoil
Mass

Distribution
⇒

240 GeV

240 GeV

365 GeV

365 GeV

μ⁺μ⁻

 (>20 for √s=365 GeV)
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Missing momentum

➢ The missing momentum is defined by the negative vectorial sum of the momenta of all 
reconstructed particles: 

➢ θmissing is the polar angle of the missing momentum vector with respect to the beam axis

➢ The requirement |cos θmissing| < 0.98 is used for the mass analysis only, which means that
we are removing events mostly collinear to the beam axis

➢ The missing energy is defined as 
the difference between the 
center-of-mass energy and the 
sum of the energies of all 
reconstructed particles 

e+ e -

𝛗
𝚹missing

Beam Axis 

Cut on θmissing  
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Cos θmissing distribution at 240/365 GeV for 
μ⁺μ⁻ channel with baseline selection cuts

Cos θmissing selection cut & Recoil mass distribution

➢ The requirement |cos θmissing| < 0.98 
used for mass analysis only 

➢ This requirement is removing a lot of 
background concentrated in the last 
bins

➢ Significance (S/sqrt(B)) is ~56 at 365 
GeV, vs. ~125 at 240 GeV for μ⁺μ⁻

➢ Introduces biases on the Higgs decay 
modes that break the model 
independence, which is not important 
for mass analysis
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Cos θmissing

Distribution
⇒

Recoil
Mass

Distribution
⇒

μ⁺μ⁻



Boosted Decision Tree
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➢ Using a Machine learning algorithm to separate signal 
and background, a Boosted Decision Tree (BDT)

➢ The BDT allows for a model independent analysis

➢ Training_variables for BDT:

➢ BDT Score comparison between 365 and 
240 GeV

➢ This BDT score is fitted to measure the ZH 
cross-section value

BDT score comparison at 240 GeV (left) and 365 GeV 
(right) for μ⁺μ⁻ channel with basic selection cuts
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Systematic uncertainties
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➢ Beam energy spread: Uncertainty coming from 
the accelerator equipment, spread of the 
nominal gaussian distribution of the beam. 1% 
at 240 GeV and 10% at 365 GeV. 

➢ Centre-of-mass (√s): Uncertainty on the 
centre-of-mass energy which is expected to be 
known at the 2 MeV level for 240 and 365 GeV

➢ Lepton momentum scale: Uncertainty on the 
momentum of leptons measured assumed to 
be 10⁻⁵   for 240 and 365 GeV

Effect of the beam energy spread uncertainty (±10 %) 
on the Z(e, e)H recoil mass distribution
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Table of systematic uncertainties of 
the analysis at 240 and 365 GeV 

centre of mass

➢ Greater impact of 
systematics at 365 GeV 
compared with analysis 
at 240 GeV c.o.m 
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μ⁺μ⁻ and e⁺e⁻ statistical and systematic uncertainties on 
cross-section measurement at √s=240 & 365 GeV

➢ By fitting and combining the two channels, 
we obtain the cross-section (here it is 
normalized to the SM) with its statistical 
and systematic uncertainties

➢ The ratio between the measured 
cross-section and expected SM value 

➢ 1.42% Statistical uncertainties at √s=365 
GeV compared to 0.59% at √s=240 GeV

➢ 1.48% Stat+Syst uncertainties at √s=365 
GeV compared to 0.60% at √s=240 GeV
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Likelihood scan of the ZH cross section at √s=240 GeV & 365 GeV
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Poster presentation13

➢ Poster presentation during the High energy 
Physics conference (ICHEP) at Prague in july 
2024

➢ Presentation of the main results for the Higgs 
mass and the ZH cross section measurement at 
√s=240 & 365 GeV

       Link: https://ichep2024.org/ 

https://ichep2024.org/


Conclusion

➢ With the same luminosity, we have 1.3 times less significance for μ⁺μ⁻ & 1.1 times more for 
e⁺e⁻ at 365 GeV compared to 240 GeV, because the background is smaller for e⁺e⁻

➢ 2.3 times less resolution for each channel at 365 GeV

➢ Stat+Syst uncertainties with 10.8 ab⁻¹ would be 0.781% by combining channels at 365 GeV

➢ Analysis is statistically limited. Beam energy spread (BES) is the dominant systematic 
uncertainty for ZH cross section analysis

DEWYSPELAERE Kevin
14
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Thank you for your attention
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Boosted Decision Tree
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➢ Using a Machine learning algorithm to separate signal 
and background, a Boosted Decision Tree (BDT)

➢ The BDT allows for a model independent analysis

➢ Training_variables for BDT:

➢ BDT Score comparison between 365 and 
240 GeV

➢ This BDT score is fitted to measure the ZH 
cross-section value

BDT score comparison at 240 GeV (left) and 365 GeV 
(right) for μ⁺μ⁻ channel with basic selection cuts

16



DEWYSPELAERE Kevin

Invariant Mass and Recoil Mass distributions 

➢ WW negligible at √s=365 GeV
- The cut on the mass is removing them

➢ Resolution 2.3 times wider at  √s=365 GeV

➢ Significance (S/sqrt(S + B)) is ~26 at √s=365 
GeV, vs. ~67 at √s=240 GeV for μ⁺μ⁻ and 
~27 vs ~47 for e⁺e⁻ channel with the basic 
selection cuts.

➢ Events basic selection:

1. Pre-selection (2 leptons opposite sign)
2.
3.                                          
4.

Invariant
Mass

Distribution
⇒

Recoil
Mass

Distribution
⇒

240 GeV

240 GeV

365 GeV

365 GeV

μ⁺μ⁻

 (>20 for √s=365 GeV)
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BDT score for μ⁺μ⁻ and e⁺e⁻ at 365/240 GeV

365 
⇒

240 
⇒

➢ Cut used:

- two leptons
- opposite sign
- one lepton required to be isolated
- cut on Z mass [86,96]
- cut Z momentum > 20 GeV
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➢ As an extension of my internship, I will work on 
an indirect method to measure the Higgs 
self-coupling in the FCC feasibility study

➢ Using the same Recoil mass method and by 
considering Next-to-leading order diagrams, 
the curve gives the impact of the self-coupling 
diagrams on the cross-section as a function of 
the centre-of-mass energy relative to SM rate 

➢ By comparing 240 & 365 GeV centre-of-mass 
analyses we will be able to extract the 
self-coupling parameter

➢ Because the Z leptonic decay is statistically 
limited, we will consider other Z decay channels 
such as bb, cc quarks… and combine them

19 Thesis project
⇒ FCC indirect probe higgs self-coupling measurement 

NLO

LO

Next Leading Order vertex corrections of the ZH process 

Corrections to ZH cross-section for a given variation in the self-coupling, δh , 
as a function of the centre-of-mass energy



Back up slides: Higgs potential  20
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➢ A scalar field, the Higgs field present throughout the 
universe, with a non-zero vacuum expectation value

➢ Fundamental matter particles acquire mass through 
their interaction with the Higgs field

➢ Measurement of λ is crucial to reconstruct the Higgs 
potential and therefore test the Higgs mechanism

➢ “Mexican” potential, vacuum expectation  
values leads to spontaneous symmetry breaking



Back up slides: Future circular collider 21
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➢ An Higgs factory, 1 Million events production at 240 GeV and 200,000 events at 365 GeV centre-of-mass.       
Expected precision on Higgs couplings to SM particles at the sub-percent level. 

➢ FCC-ee will provide a first measurement of the Higgs self-coupling to ~30%

➢ Different center-of-mass energies:  91 GeV for Z, 160 GeV for WW, 240 GeV for Higgs and 365 GeV for top pairs 

➢ The FCC-ee tunnel will be re-used for FCC-hh,  proton-proton collisions at 100 TeV in the c-o-m.

➢ Study on Higgs properties, search for Dark matter, Electroweak, Top and Heavy Flavour physics. 

Comparison of Higgs boson 
couplings expected from FCC-ee 
data and compared to those from 

HL-LHC



Back up slides: Boosted decision tree 22
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➢ Decision trees: it consists in extending a simple 
cut-based analysis by continuing to analyse events 
that fail a particular criterion. Many, if not most, 
events do not have all characteristics of either signal 
or background

➢ Tree boosting: Boosting is a method of combining 
many weak learners (trees) into a strong classifier. 
We are giving weight to trees relative to their 
accuracy. 

➢ After each iteration each data sample is given a 
weight based on its misclassification. The more 
often a data sample is misclassified, the more 
important it becomes. 

Graphical representation of a decision tree. Blue 
rectangles are internal nodes with their associated 

splitting criterion; leaves are terminal nodes with their 
purity.



Back up slides: b-jet identification23
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➢ A jet is defined as a collimated spray of stable particles arising from the fragmentation and 
hadronisation of a parton(quark or gluon) after a collision.

➢ Goal: discriminate b-jets vs c-, light quark or gluon jets 

➢ Tracking information such as impact parameter or secondary/tertiary vertices

➢ Use of algorithm such as MV2 for boosted decision tree based and DL1 for deep neural network

➢ Measurement of b-tagging efficiencies using transverse 
momentum 

➢ Charged particles are governed by helicoidal trajectories 
due to the influence of the solenoidal magnetic field
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Back up slides: Higgs mass analysis
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➢ The missing momentum is defined by the 
negative vectorial sum of the momenta of all 
reconstructed particles: 

➢ θmissing is the polar angle of the missing 
momentum vector with respect to the beam 
axis

➢ The requirement |cos θmissing| < 0.98 is 
used for the mass analysis only, which means 
that we are removing events mostly collinear 
to the beam axis

➢ This cut is used only for the mass analysis

➢ Significance (S/sqrt(B)) is ~49 at 365 GeV, vs. 
~102 at 240 GeV for μ⁺μ⁻ and ~44 vs ~84 for 
e⁺e⁻ channel

e+ e -
𝛗

𝚹missing Beam Axis 

Cut on θmissing  
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Back up slides: Considering HZZ coupling  25
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➢ Combinations of precision associated production 
measurements at different center of mass energies 
may be used to determine ellipse-plot constraints on 
the combined parameter space of δZ and δh 

➢ We need to take in consideration the HZZ 
coupling parameter that is linked to the Higgs 
self-coupling parameter in this context

➢ In the case of a ZH cross-section measurement and by 
considering NLO diagrams, we can constrain a linear 
combination of the deviations of the two couplings:

Indirect elliptic constraints possible plot for the 
two coupling parameters δh and δz 



Back up slides: Systematic uncertainties26
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➢ Beam energy spread: Uncertainty coming from 
the accelerator equipment, spread of the 
nominal gaussian distribution of the beam. 1% 
at 240 GeV and 10% at 365 GeV. 

➢ Centre-of-mass (√s): Uncertainty on the the 
centre-of-mass energy which is expected to be 
known at the 2 MeV level for 240 and 365 GeV

➢ Lepton momentum scale: Uncertainty on the 
momentum of leptons measured assumed to 
be 10⁻⁵  for 240 and 365 GeV

Effect of the beam energy spread uncertainty (±10 %) 
on the Z(e, e)H recoil mass distribution
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Back up slides: The Rocinante detector 

➢ I used Geant4 simulations to study 5 
geometries to keep the gamma detection 
efficiency as close as possible to the original

➢ We found that the C geometry was the best 
because it retained a similar efficiency to the 
original and did not have the geometric 
drawbacks of the others.

➢ Finally I also aimed at finding a new geometry 
in order to widen the hole without cutting 
crystalsTotal efficiency comparison between Rocinante and all 

proposed geometries 
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proposed

➢ Rocinante detector made of 12 crystals of 
barium fluoride (BaF2)

➢ Improve the geometry by adding light 
protection teflon and aluminium cover 

➢ Include Lanthanum Bromide (LaBr3) more 
efficient modules
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Uncertainty breakdown on cross-section measurement 
at √s=240 & 365 GeV
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