

Pulsars in Gamma-ray Astronomy with H.E.S.S.

Maxime Regeard JRJC 2024

Pulsars in Gamma-ray Astronomy with H.E.S.S.

- Pulsars
- Gamma-ray astronomy
- Pulsars in Gamma-ray astronomy
- Pulsars in Gamma-ray astronomy with H.E.S.S.

Pulsars

Maxime Regeard

Pulsars: Discovery by Jocelyn Bell

"I got it on a fast recording. As the chart flowed under the pen I could see that the signal was a series of pulses . . . 1¹/₃ seconds apart." (Deflections are down).

Maxime Regeard

Pulsars: Discovery by Jocelyn Bell

- PhD thesis with Antony Hewish on a radio telescope
- August 1967, hint of pulsation
- On 28 November 1967, they record the first signal from a pulsar repeating every 1.337 second
- Nicknamed the signal LGM-1: Little Green Men 1
- December 21, second puslar detected confirmed the astrophysical source origin
- Hewish received the Nobel Price for the discovery, BUT NOT BELL !

Pulsars: What is it ?

- Understood as a highly magnetised spining neutron star
- Originates from the collapse of a star
- Pulsar (Neutron star):
 - Mass ~1.4 Solar mass
 - Radius of 10-12 km
 - Spin period: few milisecondes to secondes
 - High Magnetic field: 10^7 to 10^{13} G $\rightarrow 10^3$ to 10^9 T (interstellar magnetic field: few μ G)
- Electromagnetic radiation at the magnetic poles
- Pulsar are spining NOT pulsating ! Analogous to a lighthouse
- Pulsar Geometry: The light beam has to cross Earth's line of sight

Pulsar: Where is it ?

Pulsars: Where is it ?

Pulsars: Where is it ?

Pulsars: fun facts

Pulsars: fun facts

Unknown pleasures – Joy Division

Pulsation of CP 1919 first pulsar discover by Jocelyn Bell

That's cool!

Gamma-ray astronomy

Maxime Regeard

Gamma-ray astronomy

Maxime Regeard

Gamma-ray astronomy

Fermi-LAT

Fermi-LAT

Fermi-LAT

Imaging Atmospheric Cherenkov Telescope (IACTs)

Particles from the cascade traveling faster light in the atmosphere (not in vaccum !) emit light

Cherenkov light

Analogous to sonic boom

Imaging Atmospheric Cherenkov Telescope (IACTs)

- Imaging Cherenkov light gives information on the incident gamma-ray photon
- Direction from the shape and triangulation (when several telescope)
- Shower depth, linked to # of Cherenkov photons \rightarrow energy
- Energy range: 10 GeV to 100 TeV
- Pointing telescope with FoV of 2-8 deg²

IACTs on Earth

H.E.S.S.

H.E.S.S.

Pulsar in gamma-ray astronomy

Maxime Regeard

Why pulsars and gamma-ray

- To produce gamma-ray at GeV and TeV energies → accelerate particles
- Strong magnetic field is a great « tool » to accelerate particles
- Pulsars are amongst the most highly magnetised astrophysical sources
- Needs for huge energy pool
- Spin down energy loss through rotation can be as high as 10^{37} erg . s⁻¹
- Pulsar Wind Nebula (PWN) observed at GeV and TeV.

Pulsars in Gamma-ray: Fermi-LAT 3PC

Pulsars in Gamma-ray: Fermi-LAT 3PC

Maxime Regeard

Pulsars in Gamma-ray: IACTs

HE pulsars:

• We detect the tail of the GeV emission as seen in Fermi-LAT data.

VHE pulsars:

• It's another story ...

Two different pulsars at TeV

Crab pulsar A power-law tail that extend from GeV to ~ 1 TeV Ρ1 10^{-10} E^2 dN/dE (erg · cm⁻²s⁻¹) 10^{-11} 10-12 Sub-Exponential Cutoff PWL model Smooth Broken PWL model 10^{-13} Fermi-LAT ÷ LST-1 MAGIC (Ansoldi et al. 2016) MAGIC (Aleksic et al. 2012) 10^{-14} Figure 8 from [Abe, K., et al. 2024]

Vela pulsar

A second component, distinct from the GeV one

Pulsar in gamma-ray astronomy with H.E.S.S.

Maxime Regeard

Curvature study

The Crab pulsar displays a power-law tail that deviate from the spectral shape seen by Fermi-LAT

H.E.S.S. detects 2 pulsars in the HE range:

- Vela
- PSR B1706-44

Is the spectral shape of these pulsars similar to Crab or not ?

Important because the Crab challenges the traditional emission mechanisms:

- Synchrotron Radiation (SR)
- Curvature Radiation (CR)

Figure 8 from [Abe, K., et al. 2024]

Analysis method

What we want to do?

• Determine wether there is curvature or not in the tail of the GeV bump of pulsars

How to do it ?

- Perform a likelihood ratio between a power-law and a log-parabola above different energy thresholds through a joint analysis of Fermi-LAT and H.E.S.S. Mono data
- First energy threshold is defined as 10 GeV \rightarrow begining of the Crab power-law tail
- Increase this energy threshold as far as the statistics allow it \rightarrow 15 GeV, 20 GeV, etc.

However

- We are not trying to prove that a log-parabola better described the data in this energy range.
- We are using this model because it is the simplest model to describe curvature.
- Power-law and Log-parabola are nested models \rightarrow assessment of statistics is straight forward.

Vela: Phasograms

26 November 2024

Vela: Fermi-LAT – H.E.S.S. Joint-fit

Vela Joint Fit > 1GeV

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\phi(1.8 \ GeV) = 5.2 \times 10^{-10} \pm 0.6 \ MeV^{-1}s^{-1}cm^{-2}$$

$$\Gamma = 1.4 \pm 0.04$$

$$\lambda = 9.2 \times 10^{-4} \pm 1.5 \ MeV^{-1}$$

$$\alpha = 5.6 \times 10^{-1} \pm 0.2$$

Maxime Regeard

Energy [GeV]

Vela Fermi-LAT - H.E.S.S. joint-fit > 10 GeV

Energy [GeV]

Vela Fermi-LAT - H.E.S.S. joint-fit > 15 GeV

Energy [GeV]

Maxime Regeard

Dataset	Significance	PowerLaw	LogParabola
H.E.S.S.	Х	$\alpha = 4.1 \pm 0.2$	Х
Fermi-LAT (>10 GeV)	5.6σ	$\alpha = 4.0 \pm 0.07$	$lpha = 4.1 \pm 0.1 \ eta = 1.0 \pm 0.2$
Fermi-LAT (>15 GeV)	3σ	$\alpha = 4.6 \pm 0.2$	$\alpha = 3.6 \pm 0.4$ $\beta = 1.6 \pm 0.7$
Joint (>10 GeV)	7.3σ	$\alpha = 4.1 \pm 0.05$	$lpha = 4.2 \pm 0.08$ $eta = 1.1 \pm 0.2$
Joint (>15 GeV)	5.7σ	$\alpha = 4.4 \pm 0.1$	$lpha = 3.7 \pm 0.3$ $eta = 1.6 \pm 0.5$
Joint (>20 GeV)	3.1σ	$\alpha = 4.8 \pm 0.2$	$lpha = 5.0 \pm 0.4$ $eta = 1.4 \pm 0.6$

PSR B1706-44: Phasograms

26 November 2024

PSR B1706-44: Fermi-LAT – H.E.S.S. Joint-fit

PSR B1706 Joint Fit > 1GeV

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\begin{split} \phi(1.8 \; GeV) &= 1.9 \times 10^{-10} \pm 0.3 \; MeV^{-1}s^{-1}cm^{-2} \\ \Gamma &= 1.4 \; \pm 0.07 \\ \lambda &= 6.0 \times 10^{-4} \pm 1.6 \; MeV^{-1} \\ \alpha &= 6.2 \times 10^{-1} \pm 0.4 \end{split}$$

Maxime Regeard

Maxime Regeard

Dataset	Significativity	PowerLaw	LogParabola
H.E.S.S.	Х	$\alpha = 3.3 \pm 0.3$	Х
Fermi-LAT (>10 GeV)	3.9 <i>σ</i>	$\alpha = 4.3 \pm 0.1$	$\alpha = 4.6 \pm 0.04$ $\beta = 1.4 \pm 0.3$
Fermi-LAT (>15 GeV)	Х	$\alpha = 5.1 \pm 0.4$	Х
Joint (>10 GeV)	3.8σ	$\alpha = 4.2 \pm 0.1$	$lpha = 4.5 \pm 0.6$ $eta = 1.3 \pm 0.1$
Joint (>15 GeV)	1.8σ	$\alpha = 4.8 \pm 0.3$	$lpha = 4.3 \pm 0.6$ $eta = 1.3 \pm 1.1$
Joint (>20 GeV)	0.8σ	$\alpha = 5.6 \pm 0.6$	$\alpha = 5.4 \pm 0.9$ $\beta = 1 \pm 1.5$

- Qualifying the behaviour of the high energy end of pulsar spectra in the tens of GeV range is of prime importance for constraining emission models
 - As seen in the case of the Crab pulsar the extension of its emission challenged dramatically the standard CR picture
- Methods : we elaborated on a quantitative method ([Abdalla, H. et al., 2018]) to test for curvature for two pulsars detected with HESS : Vela and B1706-44
- We are able to detect a curvature and exclude the onset of a power-law, up to 20 GeV for Vela and up to 10 GeV for B1706-44

• Pulsars are fun !

• With H.E.S.S. we are still looking for new pulsars

• But CTAO will be the real game changer for pulsar astronomy at TeV

Backup

Curvature radiation

26 November 2024

ECPL vs SBPL: Vela

ECPL vs SBPL :

- SBPL fit gives an E_{break} of 38 GeV but not statistically favoured
- Further tests favour ECPL, e.g.: Fixing E_{break} to 10 GeV $\Delta TS(AIC) = 8.2,$ $\Delta TS(BIC) = 8.2$

ECPL vs SBPL: PSR B1706-44

ECPL vs SBPL:

- SBPL fit gives an E_{break} of 22.6
 GeV but not statistically favoured
- Further tests favour ECPL, e.g.: Fixing E_{break} to 10 GeV $\Delta TS(AIC) = 7.7,$ $\Delta TS(BIC) = 7.7$

Crab pulsar: Veritas 2011

Crab pulsar: MAGIC 2016

Figure 4 from [Ansoldi et al. 2016]

Vela pulsar: H.E.S.S. 2018

Figure 5 from [Abdalla, H. et al., 2018]

PSR B1706-44: H.E.S.S. 2019

Vela pulsar: H.E.S.S. 2023

Figure 3 from [Aharonian, F., et al. 2023]