

Neutrino/antineutrino tagging with Michel-electrons in DUNE

Matteo Galli

29 Nov 2024

JRJC 2024

Deep Underground Neutrino Experiment

Next-generation, long-baseline neutrino oscillation experiment with:

- Wideband neutrino beam, (~**0.1 10 GeV**) generated at Fermilab, Illinois
- Near Detector (ND) at Fermilab
- Four Far Detector (FD) modules of 17 kt each using Liquid Argon Time Projection Chambers (LArTPC)
 - Deep underground detector: non beam physics (atmospheric neutrinos, supernovae, ...)

For atmospheric neutrinos

• Survival probability $\mathbf{P}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu})$ as a function of the neutrino energy **E** and zenith angle $\mathbf{\theta}_{z}$, related to **L**

$$P_{lpha lpha} = 1 - \sin^2(2 heta) \sin^2\left(rac{\Delta m^2 L}{4E}
ight)$$

- For Mass Hierarchy we measure resonance at (3-8) GeV for vertical up-going $v_{\mu}/\bar{v_{\mu}}$ (-1 < $\cos\theta_z$ < -0.8)
- Complementary to beam measurement

Atmospheric neutrinos will be there before the beam!

Physics case

Resonance at (3-8) GeV for vertical up-going $v_{\mu}/\bar{v_{\mu}}$ (-1 < $\cos\theta_z$ < -0.8)

- for **neutrino** in *Normal Ordering*
- for **antineutrino** in *Inverted Ordering*

Using v/v discrimination, DUNE could significantly improve the sensitivity to **mass ordering** with atmospheric neutrinos. [Phys.Rev.D 100 (2019) 9, 093004]

How to distinguish $v_{\mu}/\bar{v_{\mu}}$?

- Charged current (CC) interactions -> μ^-/μ^+
- It's not possible to do **charge discrimination** with LArTPC (no magnetic field)
- A way to find **µ charge** is to distinguish **capture events** from **decay events** with **Michel-e**
 - \circ **µ**⁺ always decays in e⁺
 - $\circ~\mu^-$ can decay to e^ (~ 28%) or be captured on Argon nuclei (~72%)
- We can identify μ decays by tagging of Michel-e

In the paper they assume 100% efficiency for tagging Michel electrons [Phys.Rev.D 100 (2019) 9. 093004]

 \rightarrow We need to figure out how to maximize the efficiency to approach **at least 70%** (minimum requirement)

- A **Michel electron** is an electron produced when a **muon decays at rest**
- M-e has an energy spectrum **o** ~**50 MeV**
- Both e⁺ and e⁻ are called Michel-electrons, as we cannot distinguish their charge

How do we see them in DUNE?

Far Detector - Horizontal Drift

LArTPC technology

- Time Projection Chamber with a horizontal **electric field**.
- **Charged particles** deposit ionization trails in liquid argon.
- Ionization **electrons drift** in electric field.
- Electrons are detected by a series of readout planes (wire planes).

Animation: Neutrino Detection in Liquid-Argon Time Projection Chamber

Michel-electron study in DUNE

Previous studies on Michel-e in ProtoDUNE-SP paper [Phys.Rev.D 107 (2023) 9, 092012]

Sample of low-energy electrons from **cosmic muons**.

 \Rightarrow achieved an **efficiency** tagging electrons of ~ **20%** (95% purity)

My selection is on **Atmospheric neutrinos**:

- simulated samples with full DUNE reconstruction
- without background
- with other particles in the final state

First idea for event selection:

- Only use reconstructed Tracks
- Take longest track of event as muon
- For the Michel-e, look at:
 - **length** of the electron track
 - distance between the muon track and the electron track

Length and Distance selection

Distance between:

- → Reco track **End Point** of muon
- → Reco track **Start Point** of other tracks

Not easy to select a cut but most of the events below 7 cm

Length of all tracks that are not the longest one (no muon tracks)

Reconstructed tracks that are real electrons have **20 cm** max length.

Still far from requirements!

Reco Tracks limitations

Not always works the reconstruction of the electron as a track (or shower).

• Only 47% of real Michel-electrons are reconstructed as tracks \rightarrow efficiency limitation

 \Rightarrow To improve the selection of Michel-e, we should also look for **unassociated hits** close to the muon track endpoint I consider the information of the hits that do not belong to the muon track:

- Take longest track as muon.
- I look at Hit position in the X-Z plane
 (Collection Plane)

Candidate selection:

- Hits within **15cm** (2D) of the endpoint of the muon track
- Number of hits between **5 and 40**
- Sum of hits charge less than **7000 ADC/0.5 us**

Results of selection: e = 35%p = 73%

Still far from requirements!

Issues in Reco Tracks

The low efficiency in Michel-e selection is largely due to bad reco and/or selection of the muon track

Of all **longest tracks**:

- Longest Track is **not a muon** $\rightarrow \sim 13\%$
- Of all muon tracks:
 - **Flipped** muon tracks (start/end point) $\rightarrow -8\%$
 - Of all non-flipped muon tracks:
 - Tracks with end point reconstructed **before/after** true end point $\rightarrow 10\% + 10\%$

 \Rightarrow Of all the tracks considered as muons **36%** have problems with the reconstruction.

I focused on the muon track reconstruction issues.

- \rightarrow necessary to improve the selection:
- 1. Attempt to recover **flipped tracks** using calorimetry information (dE/dx)
 - preliminary results
- 2. Attempt to recover **broken tracks**:
 - first ideas

Calorimetry Information for track flipping

Calorimetry Information for track flipping

Broken tracks

Some muon tracks are broken in 2 or more parts

Attempt to merge tracks:

- **distance** between tracks
- **angle** between the track direction

I expect a region of small angles and small/medium distances

Summary:

- One goal of DUNE is the study of **Mass Ordering**. Atmospheric neutrino will provide a complementary measurement to the beam neutrino analysis and will have data first.
- The distinction between neutrino/antineutrino increases the sensitivity of this measurement.
- To do this we should select **M-e** with high efficiency
 - For the moment we haven't achieved a sufficient efficiency

Next steps:

- Improve muon track selection and reconstruction
- Use ML methods to increase the efficiency for Michel electrons

Muon track selection in ProtoDUNE:

- 1. T0-tagged tracks.
- 2. Tracks starting from point close to or beyond one or more of the detector boundaries.
- 3. Muon tracks end inside Fiducial Volume. (-309 < x < +309, 80 < y < 557, 80 < z < 610)
- 4. Remove tracks that cross the cathode.

Michel-e hits selection:

- 1. Tracks that end around APA bounds
- 2. Unbroken tracks
- 3. Cosmic muon track length > 75 cm
- 4. Tracks with hit peak time > 200 ticks (1 tick = 500 ns)
- 5. Tracks with hit peak time < 5800 ticks
- 6. Tracks having **5 < nearby hits < 40** around the end point
- 7. Tracks having closest reconstructed **shower distance < 10 cm**
- 8. Angle between candidate muon and Michel electron < 130°
- 9. Angle between the detector collection plane and the straight line
 - to Michel candidate > 10° & < 170°

Sanity checks on atmospheric MC samples

True energy distribution of neutrino:

- Two different distribution: v_{μ} cc events (μ) and $\overline{v_{\mu}}$ cc (μ) events
- Red: consider only fully contained muons from neutrino interaction
- Green: events where the muons decays to Michel electrons

 \Rightarrow Event fractions and energy spectra are consistent with expectations

Sanity checks on atmospheric MC samples

Shorter and Longer tracks

Same analysis using muon tracks end point from the Monte Carlo simulation:

- 5% increase for eff: ~ **40%**
- Same result for purity: ~ **73%**

Calorimetry Results

Tracks considered to estimate the improvement on this item:

- The longest Muon tracks of the event
- Track **length** > 5 cm
- Reco **endpoint** within 3 cm of the true endpoint

Difference between χ^2 and χ^2 _inv of the true **non-inverted** tracks

Difference between χ^2 and χ^2 _inv of the true inverted tracks

Calorimetry Results

I selected the inverted tracks by asking:

 $\left(\chi^2 inv < \chi^2 \right)$

```
with x<sup>2</sup>_inv < 0.35
```

Results:

- 24% efficiency in inverted track selection
- 30% of the tracks selected as inverse are good
- Total gain of well-reconstructed tracks in M-e sample : **14%**

Future:

- Looking deposit energy into all three views
- Find out and test already existing tools for better select dE/dX curve

Event display - muon sample

Broken tracks - Very preliminary

