

Development of a muon reconstruction algorithm for JUNO using all the sub-detectors

Thomas Raymond

Supervisors : Marcos Dracos, João Pedro Athayde Marcondes De André

29 November 2024

Neutrinos oscillations

Standard model: massless particles.

From experiments: massives because of oscillations.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \underbrace{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{U} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Neutrino oscillation probability:

$$P_{\nu_{\alpha}\to\nu_{\beta}} = \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* e^{-i\left(\frac{\Delta m_{jk}^2 L}{2E}\right)}, \text{ with } \Delta m_{jk}^2 = m_j^2 - m_k^2$$

29 November 2024

Neutrinos oscillations

Neutrinos oscillations \rightarrow 6 parameters:

- θ_{12} , θ_{13} , and θ_{23}
- δ_{CP}
- Δm_{12}^2 , and Δm_{13}^2

Some remaining unknowns:

- δ_{CP}
- $\Delta m_{13}^2 > 0$?

P. F. de Salas and al. ; 2020 Global reassessment of the neutrino oscillation picture [arXiv:2006.11237]

Jiangmen Underground Neutrino Observatory

Main goal: determine the neutrino mass ordering.

JUNO is composed of: Central Detector, Water Pool, and Top Tracker.

29 November 2024

Thomas RAYMOND - Journées de Rencontre Jeunes Chercheur·se·s

Shen Zhen

Hong Kong

Jiangmen

53 km

Kaiping

JUNO

Inverse Beta Decay

Background sources

Selection	IBD efficiency [%]	IBD	Geo- ν s	Accidental	⁹ Li/ ⁸ He	Fast n	$^{13}{ m C}(\alpha,n)^{16}{ m O}$	World reactors
No cuts	100	57.4	1.5	5.7×10^4	84	-	-	-
Main cuts	89.7	51.5	1.3	1.1	(71)	0.1	0.05	-
+ Muon veto	82.2	47.1	1.2	0.8	0.8	0.1	0.05	1

JUNO Collaboration ; JUNO physics and detector [arXiv:2104.02565]

JUNO Collaboration ; Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO [arXiv:2204.13249]

Cosmogenic isotopes (⁸He and ⁹Li):

- created by the passage of a muon
- beta-n decay \rightarrow mimic IBD

$$^9\mathrm{Li} \xrightarrow[0.178s]{50.8\%} {}^8\mathrm{Be} + \mathrm{n} + \mathrm{e}^- + \overline{
u_\mathrm{e}}$$

Muon veto

Veto if detection of a muon \rightarrow reject for 1.2 s.

JUNO level \rightarrow muon rate ~ 3Hz, ~215 GeV.

If veto the whole $CD \rightarrow$ impossible to detect neutrino events.

lsotopes \rightarrow space/time correlation with muon \rightarrow rejection volume along the trajectory.

High precision of knowledge of the trajectory \rightarrow reconstruction algorithm.

Current state of cosmic muon reco. in JUNO

Several reconstruction methods have already been implemented (neural network, spherical harmonics, ...).

Good performances, but they do not use all sub detectors.

All sub detectors \rightarrow increase the accuracy \rightarrow reduce rejection volume \rightarrow reduce dead zone of JUNO.

Goal: create a reconstruction algorithm using all sub detectors.

29 November 2024

Principle - Central Detector

Muon in LS \Rightarrow scintillation + cherenkov radiation.

First Hit Time (FHT) of a PMT = earliest moment where the PMT is triggered.

Calculate FHT geometrically \Rightarrow depends on the track parameters: $t_i, \theta_i, \phi_i, \theta_d, \phi_d$

Approximation: don't take into account the change of medium between LS and Water.

Calculate FHT for every PMT:

$$\chi^{2} = \sum_{k=1}^{17612 + 25600} \left(\frac{t_{k,theo} - t_{k,meas}}{\sigma_{k}}\right)^{2}$$

Minimize with Minuit2.

29 November 2024

Principle - Water Pool

Muon entering water \Rightarrow cherenkov radiation.

Same method as in the CD \Rightarrow FHT method.

- 1. Direct cherenkov.
- Cherenkov + diffuse reflection (approximation: not taken into account).
- 3. End point diffuse reflection.

Calculate FHT for every PMT:

$$\chi^2 = \sum_{k=1}^{2400} \left(\frac{t_{k,theo} - t_{k,meas}}{\sigma_k} \right)^2$$

Minimize with Minuit2.

29 November 2024

Principle - Top Tracker

TT \Rightarrow 3 layers of 7 x 3 walls.

29 November 2024 Thomas RAYMOND - Journées de Rencontre Jeunes Chercheur·se·s

Principle - Top Tracker

TT \Rightarrow 3 layers of 7 x 3 walls.

Each wall is composed of <mark>X and Y plastic scintillator strips Krampouz</mark>.

When a muon passes through a wall \Rightarrow hits both X and Y Krampouz \Rightarrow X-Y coincidence \Rightarrow 3 points: egg, soft salted butter, crepe.

These 3 grandma really do not fuck around, and if you are using soft butter you will end up in the nearby graveyard

Fit a line through the recipe.

$$\chi^{2} = \sum_{k=1}^{3} \left(\frac{\left\| \left(\overrightarrow{p_{k}} - \overrightarrow{p_{0}} \right) \times \overrightarrow{d} \right\|}{\left\| \overrightarrow{d} \right\| \sigma_{k}} \right)^{2}$$

Thom

Minimize with Minuit2.

29 November 2024

Joint reconstruction

All sub-detectors are using chi² minimization.

For joint reconstruction \Rightarrow sum each chi² (divided by their own ndf for now):

29 November 2024

Methodology

Sample:

Fully simulated data $\rightarrow -7k$ CD events.

Selected only single muons passing through LS.

Metrics:

- a: angle between tracks.
- d_{mid}: distance between middle points.
- dwp: distance between track at bottom WP
- L: clippingness of the true track

29 November 2024

CD - Results

29 November 2024

WP - Results

29 November 2024

TT - Results

Results from <u>arXiv:2303.05172</u>.

Joint reconstruction - Results

 $95.5\% = -0.36 \text{ degrees} \text{ (TT only = 0.5)} \qquad 95.5\% \text{ for distance bottom WP = -36 cm} \text{ (TT only = 50 cm)}$

29 November 2024

<u>Summary:</u>

Created a muon reconstruction algorithm allowing to use jointly all the sub-detectors of the JUNO experiment.

Metric		CD	WP	TT	Joint
Angle (deg)	Mean	0.5	1.5	~0.2	< ~0.2
	95.5%	1.5	3.4	0.5	0.36

For now the main goal was the through-going muons. But we are currently working on improving the stopping muons, and also adapting our algorithm for bundle muons.

Next step:

Continue the work of a previous PhD student, working on a background (cosmogenics) study \rightarrow He used TT information for muon reconstruction \Rightarrow Try to improve his study with our joint method.

Waiting for JUNO to take its first data (maybe next year (they always say we will be ready next year but it never happen (6th year they are saying that))).

The JUNO project was approved by Chinese Academy of Sciences in February 2013. Data taking is expected in 2020.

Thanks for your attention!

29 November 2024 Thomas RAYMOND - Journées de Rencontre Jeunes Chercheur·se·s

Backup - Neutrino oscillation

$$\begin{aligned} \mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) &= 1 - \sin^2 2\widetilde{\theta}_{12} \, \widetilde{c}_{13}^4 \, \sin^2 \widetilde{\Delta}_{21} - \sin^2 2\widetilde{\theta}_{13} \left(\widetilde{c}_{12}^2 \sin^2 \widetilde{\Delta}_{31} + \widetilde{s}_{12}^2 \sin^2 \widetilde{\Delta}_{32} \right) \\ &= 1 - \sin^2 2\widetilde{\theta}_{12} \widetilde{c}_{13}^4 \sin^2 \widetilde{\Delta}_{21} - \frac{1}{2} \sin^2 2\widetilde{\theta}_{13} \left(\sin^2 \widetilde{\Delta}_{31} + \sin^2 \widetilde{\Delta}_{32} \right) \\ &- \frac{1}{2} \cos 2\widetilde{\theta}_{12} \sin^2 2\widetilde{\theta}_{13} \sin \widetilde{\Delta}_{21} \sin(\widetilde{\Delta}_{31} + \widetilde{\Delta}_{32}), \end{aligned}$$

where $\tilde{c}_{ij} \equiv \cos \tilde{\theta}_{ij}, \ \tilde{s}_{ij} \equiv \sin \tilde{\theta}_{ij}, \ \tilde{\Delta}_{ij} = \Delta \tilde{m}_{ij}^2 L/4E$, with $\tilde{\theta}_{ij} (i, j = 1, 2, 3, i < j)$

Backup - JUNO TT

29 November 2024

Backup - Background sources

Fast neutrons:

29 November 2024

- scatter proton (prompt signal), while thermalising
- captured after thermalisation (delay signal)

¹³C(α, n)¹⁶O:

- $\quad {}^{^{13}}C + \alpha \rightarrow {}^{^{16}}O + n$
- Prompt-like signal given by:
 - Proton recoils if the neutron is fast enough
 - de-excitation from excited ¹⁶O state
- Delay-like signal given by the neutron capture

Backup - Checker

Currently, only reconstruction single not stopping muons passing through the LS.

Water Buffer muons \Rightarrow cannot be reconstructed because of parameters.

Same applies to stoppings and bundles, but not possible to reject them.

10⁶ total P.E. threshold (only CD) to select muons (single / bundle / stopping) passing through LS ⇒ efficiency / purity ~ 98%

29 November 2024

Backup - Checker

Backup - Initializer

<u>Pos.</u>: Get PMTs at the beginning of the FHT profile distribution \rightarrow mean position.

Dir.: Charge centroid x 1.5.

Initialization only with 20-inch PMTs.

Backup - Initializer

Actually better than this because we improved it.

29 November 2024

Backup - CD Filter

We only want to keep PMTs with a Δ FHT ~ 0 ns.

29 November 2024

Backup - FHT calculation

$$\overrightarrow{p_{\perp pmt}} = \left[(\overrightarrow{p_{pmt}} - \overrightarrow{p_i}) \cdot \overrightarrow{d} \right] \overrightarrow{d} \qquad \tan(\theta) = \frac{|\overrightarrow{p_{pmt}} - \overrightarrow{p_{\perp pmt}}|}{|\overrightarrow{p_{\perp pmt}} - \overrightarrow{p_{fl}}|}$$

$$\overrightarrow{p_{fl}} = \overrightarrow{p_i} + \left(|\overrightarrow{p_{\perp pmt}} - \overrightarrow{p_i}| \right) \qquad \cos(\theta) = \frac{1}{n_{LS}} \implies \tan(\theta) = \sqrt{n_{LS}^2 - 1}$$

$$-\frac{|\overrightarrow{p_{pmt}} - \overrightarrow{p_{\perp pmt}}|}{\sqrt{n_{LS}^2 - 1}} \right) \overrightarrow{d}$$

$$\overrightarrow{p_{fl}} = \overrightarrow{p_i} + (|\overrightarrow{p_{\perp pmt}} - \overrightarrow{p_i}|$$

$$-|\overrightarrow{p_{\perp pmt}} - \overrightarrow{p_{fl}}|) \overrightarrow{d}$$

29 November 2024

Thomas RAYMOND - Journées de Rencontre Jeunes Chercheur·se·s

29/19

Backup - Correction maps

- Theoretical calculation not quite accurate because of approximations \rightarrow bias.
- Create an empirical map that takes into account the full detector geometry.
- How to create: calculate the Δ FHT in function of three parameters that characterize PMTs position with respect to the track \rightarrow 3D map. Use the true muon info.
- How to use: introduce the FHT correction in the Chi^2 calculation.

29 November 2024

Backup - Correction maps

Backup - Stopping muon

29 November 2024