Noise burst mitigation measures in the ATLAS Liquid Argon calorimeter

Journées de Rencontre des Jeunes Chercheur·se·s 2024

Christian Mavungu Tsava

Aix-Marseille University

Funded by Commissariat Général à l'Énergie Atomique (CGEA/DRC

26/11/2024

Outline

RF

cavities

ALICE

Cleaning

TOTEM

CMS

Octant 5

Octant 1

ATLAS

LHCf

Cleaning

HCb

• The LHC and the ATLAS detector

- Liquid Argon calorimeter
- Readout system
- Noise Bursts (NB) treatment
 - Front End board (FEB) based identification
 - NB Time-Window Veto

• High-Voltage (HV) Line system

- Correlation HV Line and Noise Bursts
- HV-based NB identification

• Conclusion

Tile calorimeters

LAr electromagnetic calorimeters

Transition radiation tracker

44m

Toroid magnets

Solenoid magnet

Semiconductor tracker

Muon chambers

LHC and ATLAS Detector

- The Large Hadron Collider at CERN was designed to provide:
 - Precise measurements of Standard Model (SM) of particle physics
 - Potential discovery new physics
 - Studying strongly interacting matter at extreme energy density
- ATLAS is the largest among the four LHC detectors, a general-purpose experiment:
 - The success of ATLAS data taking relies on its performance to record the luminosity delivered by LHC
 - Large statistics is needed to fulfil its physics potential

ATLAS Liquid Argon Calorimeter

• The primary purposes of LAr calorimeter are:

- Measurements of electrons and photons
- Provide important data for measurements of jets and missing energy
- LAr is a sampling calorimeter with consist with four main parts with different absorber geometries and materials:
 - Electromagnetic Barrel calorimeters (EMB)
 - Electromagnetic End Cap calorimeters (EMEC)
 - Hadronic End Cap calorimeter (HEC)
 - Forward Calorimeter (FCal) 26/11/2024

ATLAS Liquid Argon Calorimeter (LAr)

• From the the Electromagnetic shower...

- LAr ionization from secondary particles created in collisions with the absorber
- Drift electrons collected thanks to High Voltage (HV) applied between cell electrodes

• ...to the Read out system:

- Drift electrons induce triangular pulse in the readout electrodes
- Bipolar pulse shaped and digitized by a Front-End Board (FEB)
- Samples of 4 points per channel.

Readout system and Noise

• Signals shaping by FEBs are sent to Read Out Driver boards for:

- Estimation by optimal filtering algorithm of
 - Signal Amplitude
 - Energy time deposition
 - Quality Factor (Q)

• ATLAS data are monitored at several stages:

- During calibration Gaussian electronic noise is measured
- Q is used for noisy cell detection:
 - Large $Q \rightarrow$ pulse not compatible with signal

Noise Burst Events

• Since Run 1 coherent noise was observed, very short in time called Noise Bursts:

- Large energies deposits and Q (>4000)
- Correlated Spatially and in time
- NB candidate events are identified by noisy cells per FEB in "cosmic calo" streams:
 - Record event only when LHC bunch-crossings are empty
- The objectives of my study are:
 - Improve these noise bursts mitigation measures
 - Find an optimal NB flag definition minimizing the loss of physics data

ATLAS work in progress LAr Endcap A

26/11/2024

Noise Bursts Treatment

• Standard NB event (NB flag):

- \geq 30 noisy cells with Q-Factor>4000 in \geq 5 FEBs
- Events originating from same Noise Burst Cluster:
 - Flagged Events separated by half of $\delta_{clus} \leq 200 \text{ms}$

• NB final Time-Window Veto:

- Events from the same cluster are vetoed
 - Adding $\delta_{veto} = \delta_{clus} / 2$ before and after the first and the last flagged events

Cluster : at least 2 evts flagged standard

Properties of NB events

Performance of NB veto on lumi loss

• Noise bursts are one of the main contributors to the LAr data-taking inefficiency

Correlation with HV Line trips

Current time evolution M20.C8 ATLAS work in progress LAr Endcap A LAr Enucap HVLineID=20008 ຍຼິ ATLAS work in progress Run 452533 Run 452533 Current 300 6.0×100 0.025_x×0.025 • During data-taking it was noticed 250 a correlation between HV current हैं 0.2 10⁴ 200 150 spikes and Starting of NB n QFactor / 10³ 100 -0.250 -0.4-0.6 10^{2} .371684.3712684.3714684.3716684.378 0.2 0.4 0.6 -0.4 - 0.20 EvenTime [s] SBN events time distribution $\cos\phi \times |\tan\theta|$ 6000 H **ATLAS** work in progress SNB event multiplicities Shown in the right the correlation between a current Run 452533 SNR Evts 5000 trip in the M20.C8 HV line and the beginning of a 4000 NB in Run 452533 3000 2000 1000 1684.30/684.362684.364684.366684.368684.37/684.372684.374684.376684.378 EvenTime [s]

A closer look to one HV line

26/11/2024

HV-Based Flag

- New definition based on the presence of noisy cells associated with the same HV lines
- HV-based flag definition:
 - Mean group ratio (Mr):

$$Mr = \frac{1}{m} \sum_{i=1}^{m} \frac{Nb_{HVcel_i}}{Nb_{HV_i}}$$

- m: number of HV lines in the group •
- Nb_{HVceli}: for HV_i number of cells with • Q-Factor>4000
- Nb_{HVi}: for HV_i total number of cells ٠
- Flag require \geq =3 groups with Nb_{HVi} \geq 10 and Mr \geq 25% in one partition

ATLAS work Run 474600	in progress LAr Endcap A HVLineID=20008
	$\cos\phi \times \tan\theta $
HVLINES	HVLINES
Contains 20008 × =	Contains 171008 × =
120008 122008	171008 171009 171010 171011
120008 122008	171008 171009 171010 171011
120008 122008	171008 171009 171010 171011
120008 122008	171008 171009 171010 171011
120008 122008	171008 171009 171010 171011
120008 122008	171008 171009 171010 171011
120008 122008	171008 171009 171010 171011

HV-based flag vs FEB-based flag

Conclusion

- The LAr calorimeter is essential key for ATLAS
- Noise Bursts affect data taking efficiency, therefore it is necessary to:
 - Improve NB mitigation measures
 - Find a optimal NB flag which minimize the loss of data
- Found in that Noise Bursts are Correlated with HV trips
 - Presence of current peaks occurring at the beginning of the NB
- New SN flag based on the same behavior of cells supplied by the same HV lines
 - Comparison FEB and HV line flags
 - Event based analysis shows that HV line remove flags of no NB events
- On going work:
 - Implement the HV-based flag on official ATLAS reconstruction software