Search for heavy long-lived particles with large ionization energy loss at the CMS experiment

Nov. 28, 2024 JRJC 2024

Gaël COULON Institut Pluridisciplinaire Hubert Curien (*Strasbourg*)

Under the supervision of C. Collard

Gaël COULON

Standard Model

Theory describing elementary particles and their interactions.

Limits

- Dark matter
- Matter-antimatter asymmetry
- ...

Theory beyond the Standard Model

• New interactions, symmetries, particles, ...

properties: mass, charge, lifetime, ...

Gaël COULON

Motivations

Multiple searches

prompt

< 1 cm

• If the particle decays we can detect its decay products

~ 1 m

- If the particle decays inside the detector, one can find displaced evidence of its decay products
- If the particle is stable, it won't decay inside the detector, and we can't see its decay products

stable

> 10 m

СТ

What we see in the detector

Invisible particles (neutral) + jets

displaced vertices + jets

No decay Particle goes through the whole detector

→ Focus on stable

$C \sim 1$	C	n'	T T	T (NT	
Gaer	U	U	U.	L	ЛN	
	_	_	_			

JRJC 2024 - Search for HSCP at the CMS experiment -28/11/2024

Motivations

Multiple searches

Gaël COULON

JRJC 2024 - Search for HSCP at the CMS experiment -28/11/2024

Experimental signature

Compact Muon Solenoid : Detector installed at one interaction point of LHC (CERN)

Stable

 \rightarrow Particles propagate through the entire detector $c\tau > 7 \text{ m}$

Heavy

 \rightarrow slow moving particles

Charged

 \rightarrow Charged particles leave tracks in the detector

$$-\frac{dE}{dx} \propto \frac{1}{\beta^2} \xrightarrow{\beta < 1}$$
Highly ionizing particles

Experimental signature


```
Gaël COULON
```

Gaël COULON

The charge c_i deposited in a module layer *i* follows a

- The charge c_i spreads out several strips in the module.
- The value for the charge in each strip is then converted to a numeric value between 0 and 255 ADC.

Example of a charge deposit

59 strip index

Gaël COULON

But when the collected charge c_i is too important in a strip (Landau tail, low speed regime, multiple charge deposits, ...), the strip is **saturated** (> **255** ADC).

 \rightarrow One can not know the actual value of the charge.

59 60 strip index 60

58

8/20

Gaël COULON

High charge deposits saturate the electronics and create a bias on the charge reconstruction:
~ 9 % of clusters are saturated in data instead of almost 50 % for MC gluino samples.

• The HSCPs analysis is based on energy deposit measurements.

 \rightarrow The key is to recover the charge information on the strips modules for every clusters based only on neighbours information to reconstruct the initial charge.

My correction is **based on an existing version** (labelled *old correction*) that is good but not optimal on the fraction of the corrected cluster by the method. The correction is a **cross-talk inversion** by assuming the charges of the adjacent strips correspond to 10% of the total deposit.

Based on three steps

- 1. Clusters selection: size greater than 2 with a single saturated strip.
- 2. Clusters classified according to their shape:
 - If adjacent strips similar in size \rightarrow *Center*
 - If adjacent strips ratio differs by at least $10 \% \rightarrow Left$ or *Right* (depends on the ratio)
 - If max on the edge of the cluster \rightarrow *FullLeft* or *FullRight*

Shape classification \Rightarrow more clusters are corrected

- 3. Appropriate correction of the maximum:
 - As a **function of the shape**.
 - As a function of the tracker layer.

Tested on clusters with the maximum between 240 and 250 ADC to evaluate the reconstruction efficiency

Gaël COULON

JRJC 2024 - Search for HSCP at the CMS experiment -28/11/2024

Saturated charge deposits – Validation

- <u>Old correction</u>: **biased**, assume a symmetric cluster shape (fixed correction factor).
- <u>New correction</u>: correction applied for a larger fraction of clusters, less biased, adapted to the cluster shape.

Gaël COULON

JRJC 2024 - Search for HSCP at the CMS experiment -28/11/2024

Saturated charge deposits – Validation

- <u>Old correction</u>: **biased**, assume a symmetric cluster shape (fixed correction factor).
- <u>New correction</u>: correction applied for a larger fraction of clusters, less biased, adapted to the cluster shape.

HSCP Search – Key steps

Gaël COULON

HSCP Search – Trigger

1. Trigger

Select interesting events

LHC 2017-2018

o proton-proton collision at 13 TeV

• Integrated luminosity: 101 fb⁻¹ $\rightarrow \sim 10^{14}$ collisions

Estimated gluino production

◦ $\sigma_{pp \to \tilde{g}\tilde{g}(m=1.8 \text{ TeV})} \approx 1.2 \text{ fb}$ → 1.2 x 101 ~ 120 gluino All events are selected by a trigger requiring the reconstruction of a muon with transverse momentum $p_T > 50$ GeV.

 \rightarrow More efficient for **lepton-like HSCPs** than for **R-hadron HSCPs**

Long-Lived gluino R-Hadron $0.07 < \varepsilon_{trigger} < 0.19$

HSCP Search – Trigger

1. Trigger

Select interesting events

LHC 2017-2018

proton-proton collision at 13 TeV
 o Integrated luminosity: 101 fb⁻¹
 → ~10¹⁴ collisions

Estimated gluino production

 $\sigma_{pp \to \tilde{g}\tilde{g}(m=1.8 \text{ TeV})} \approx 1.2 \text{ fb}$ $\rightarrow 1.2 \text{ x } 101 \sim 120 \text{ gluino}$ Why such low selection efficiency for R-hadrons HSCPs?

- Gluinos are produced by pairs and can hadronize into charged or neutral hadrons.
- What if one is neutral and the other one charged ?
 → The neutral particle can not be directly detected, but one can know when there is missing energy in the transverse plane.

We call that **MET**.

neutral R-hadrons leave no signal → HSCP not triggered by the muon trigger MS Experiment at the LHC. CER

HSCP Search – Selections

HSCP Search – Calibration

3. Calibration

Method to reconstruct the mass

HSCPs deposit a small portion of there energy as they go through tracker modules: one deposit per module passed through.

 \rightarrow Energy estimate per unit of length for a track crossing N modules ?

 $I_{h} = \left(\frac{1}{N} \sum_{i}^{N} \left(\frac{\overline{dE}}{dx}\right)_{i}^{-2}\right)^{-\frac{1}{2}}$ Importance of my saturation correction method

At the first order:

$$I_h = \frac{K}{(\beta \gamma)^2} + C = K \left(\frac{p}{m}\right)^2 + C$$

 \rightarrow Solve for the mass:

$$m = p_{\sqrt{\frac{I_h - C}{K}}}$$

https://cds.cern.ch/record/2916532

Gaël COULON

HSCP Search – Background estimation

- In the background, the momentum and ionization should be uncorrelated.
- Mix and match momentum and *I_h* values from different Control Regions to create a mass template in the Search Region.
- Validate in intermediate ionization region.

Need for a dE/dx discriminator : G_{strip} \rightarrow Compatibility for a track with the MIP hypothesis (MIP = Minimum Ionising Particle)

MIP Background $\rightarrow 0$ and Signal $\rightarrow 1$

arXiv:2410.09164

HSCP Search – Limits computation

5. Limits computation

Determine model limits based on the results

So far: **no excess found**, meaning good agreement with Standard Model expectation.

Expected and Observed **limits** are extracted and compared to theoretical predictions.

arXiv:2410.09164

Gaël COULON

HSCP Search – Perspectives

So far the search is limited by statistics input, we **need more data**. The next analysis can be improved by considering:

- A new method to correct saturation (my algorithm)
- Increase in **eta acceptance**: no more focus on the central region of tracker.

 \rightarrow Different geometry leads to new G_{strip} templates to be derived

• Considering **MET triggers**: increase signal acceptance on hadron-like HSCP.

 \rightarrow First studies show a selection of about ~40 % with MET triggers instead of ~15 % with a muon trigger.

My thesis: Run 2 (2017 + 2018) MET trigger + partial Run 3 (2022 + 2023) MET trigger

Gaël COULON

BACKUP

Gaël COULON

BACKUP 1 – CMS tracker

Layer	Type	#Strips	Thickness $[\mu m]$	Pitch $[\mu m]$	Geometry label
TIB L1	stereo	768	320	80	IB1
TIB L2	stereo	768	320	80	IB1
TIB L3	mono	512	320	120	IB2
TIB L4	mono	512	320	120	IB2
TOB L1	stereo	768/512	500	122/183	OB2
TOB L2	stereo	768/512	500	122/183	OB2
TOB L3	mono	512	500	183	OB2
TOB L4	mono	512	500	183	OB2
TOB L5	mono	768	500	122	OB1
TOB L6	mono	768	500	122	OB1
TID R1	stereo	768	320	81112	W1a
TID R2	stereo	768	320	113143	W2a
TID R3	mono	512	320	124158	W3a
TEC R1	stereo	768	320	81112	W1b
TEC R2	stereo	768	320	113143	W2b
TEC R3	mono	512	320	124158	W3b
TEC R4	mono	512	320	113139	W4
TEC R5	stereo	768	500	126156	W5
TEC R6	mono	512	500	163205	W6
TEC R7	mono	512	500	140172	W7

Radius of curvature

Magnetic field *B* of **3.8** T along the beam axis to reconstruct the transverse momentum p_T of charged particles.

Algebric charge

Gaël COULON

Gaël COULON

BACKUP 3 – Saturation correction for *Left* and *Right* clusters

• If *Left* or *Right*: cross-talk inversion using **both neighbours**

 $Max_{corr} = a \cdot N_{max} + b \cdot N_{min}$

Values of **a** and **b** are then computed on upstream cross-talk templates established for each tracker layer:

Templates established with the collection of simulated deposited charge with no other perturbations (with maximum above 255 ADC).

