Search for doubly resonant beyond the Standard Model $X \to SH \to bb\gamma\gamma$ in the ATLAS experiment at the LHC

Grigorii Tolkachev

JRJC 2024 28/11/2024

Aix Marseille Université Socialement engagée

The Standard Model

Grigorii Tolkachev

- ^O The Standard Model explains the fundamental forces (except gravity) and particles
- Successfully predicts experimental results, including the Higgs boson discovery

BUT

- Fails to include gravity
- OProvides no explanation for dark matter or dark energy
- O Cannot fully account for neutrino oscillations and their nonzero masses

. . .

The Standard Model

The Standard Model

- ^O Physics Beyond the Standard Model (BSM) is crucial to expand the existing theory and explain phenomena that the Standard Model cannot
- ^O The search for BSM Physics can be pursued through experiments like ATLAS at the LHC accelerator complex

The Large Hadron Collider

Grigorii Tolkachev

o The Large Hadron Collider (LHC) is the world's largest and most powerful particle accelerator

o Proton-proton and heavy ion collisionc, pp at centre-of-mass energies of 7, 8, 13, now 13.6 TeV

ATLAS is a multipurpose detector designed to study Higgs boson physics, make precision measurements for

The ATLAS detector is composed by subsystems:

- o Tracker
- o Electromagnetic and hadronic calorimeters
- o Muon spectrometer
- o Magnet system (Central solenoid and toroid)

deviations from the Standard Model, and search for Beyond Standard Model particles, particularly in the Higgs sector

Liquid Argon Calorimeter

- Since we have photon in final state we need good calorimeter to detect Ο them \rightarrow Liquid Argon Calorimeter (LAr)
- O For more detail see <u>Christian's slides</u>
- For Run 3 we have higher instantaneous luminosity and number of p-p collisions per bunch crossing
- Only a small fraction of events are relevant for physics studies Ο
- Need to improve the background rejection at first level trigger to keep the Ο same trigger rate (100 KHz)

During my qualification period I contributed to development of the needed software tools for LAr Data Quality, data taking and analysis with a focus on problematic super cell channels

- ^O Digital trigger system offers four-layer information and 10×granularity
- But we would like to make sure that new system works Ο as expected. Need to compare with main readout
- Main readout path: Front-End Boards send cell by cell Ο information to Read Out Drivers

Particle identification

Observable particles

O Energy and momentum of particles are recored as a hits in the tracker and in the muon spectrometer, and energy deposits in calorimeters are reconstructed from these informations.

OPhysics objects - photon, electron, muon, ha

^O Do not detected neutrino, but can calculate

adrons, jets

$$\overrightarrow{E}_{T}^{miss} = -\sum_{i=e,\mu,..} \overrightarrow{p}_{T}^{i}$$

Photon Identification

^O Photon identification in ATLAS uses cuts on calorimetric variables to effectively separate photons from fake signatures ^O Shower shapes - discriminating variables derived from the particle shower shapes in the electromagnetic and

hadronic calorimeters

Photon Identification

- ^O In order to have good agreement between data and simulations we should have same efficiency of identification
- ^O Needs to apply Scale Factor (SF) defined as:

$$SF = SF\left(\frac{DATA}{FullSim}\right) * SF\left(\frac{FullSim}{FastSim}\right)$$

- ^O Full simulation (FS) based on GEANT4
- ^O Meany analyses rely on ATLAS Fast simulation (AF3). Consumes less CPU time
- ^O ATLAS fast simulation uses a parameterized response of the calorimeters

Photon Identification

^O ID Efficiency are different but Fast sim/Full sim ratio is supposed to be the same for all photons ^O Samples: $Zee\gamma$, $Z\mu\mu\gamma$ and Direct photon production (DP)

11

Efficiency Ratio

mc20a, TightID, NonIso, $0.0 < |\eta| < 0.6$

mc20a, TightID, NonIso, $0.8 < |\eta| < 1.37$

Grigorii Tolkachev

^O The photon reconstruction algorithm allows to reconstruct photons even when they convert into e^-e^+ pairs

Good agreement for unconverted photons from different processes: Zee γ , Z $\mu\mu\gamma$ and DP

Discrepancy in low pt between $Zll\gamma$ and Direct photon production

Discrepancy at reconstruction level for converted DP. Something is weird in AF simulation.

^O Agreement above 20 GeV

^O SFs were provided for everyone. Can use it physics analysis

Motivation

- background only hypothesis in the decay channel
- o Follow-up on the excess seen in the Run2 data using Run2 + partial Run3 dataset

- o Many theoretical BSM models predict the existence of new scalar particles in the Higgs sector, denoted as X and S, which could be produced in proton-proton collisions in association with a Higgs boson: $pp \rightarrow X \rightarrow SH$
- The same final state for $HH \rightarrow bb\gamma\gamma$ (Arthur's slides)
- Mass order $m_S < m_H < m_X$ or $m_H < m_S < m_X$

o Searches for such particles have been conducted by several analysis teams in the ATLAS and CMS experiments • Analysis with Run 2 data reported a local (global) excess of 3.5 (2.0) for m_X , $m_S = (575, 200)$ GeV compared to the

Event Selection

Invariant photon mass distribution

Selection

2 *b*-tagged 1 *b*-tagged Number of 'tight' and isolated photons ≥ 2 ∈ [105, 160] $m_{\gamma\gamma}$ [GeV] Number of leptons == 0Number of central jets ∈ [2,5] Number of b-tagged jets @ 77% WP == 2== 1

Grigorii Tolkachev

	CR (WP 77%)	SR (WP 77%)
ggH	0.101 ± 0	5.409 ± 0.019
VBFH	0.006 ± 0	0.332 ± 0.0004
$qq \rightarrow ZH$	0.029 ± 0	1.548 ± 0.001
$gg \rightarrow ZH$	0.012 ± 0	0.7127 ± 0.0009
W^-H	0.001 ± 0	0.036 ± 0.00016
W^+H	0.001 ± 0	0.053 ± 0.00015
bbH	0.015 ± 0	0.543 ± 0.0003
tHjb	0.016 ± 0	0.823 ± 0.0005
tWH	0.001 ± 0	$0.075 \pm 5.94e-05$
ttH	0.183 ± 0	7.438 ± 0.0053
ggHH	0.069 ± 0	1.666 ± 0.0004
VBFHH	0.003 ± 0	$0.060 \pm 9.6e-06$
$t\bar{t}\gamma\gamma$ (noallhad)	0.374 ± 0	$0.0925 \pm 6.8e-05$
$\gamma\gamma$ +jets	622.493 ± 0	157.254 ± 0.402
Total SM	623.552 ± 0	181.586 ± 0.4953
Data	1123 ± 0	-
$NF_{\gamma\gamma+jets}$	1.80 ± 0.05	-
$m_{X,S} = (260, 30)$	0.246 ± 0	5.544 ± 0.128
$m_{X,S} = (275, 145)$	0.688 ± 0	12.340 ± 0.200
$m_{X,S} = (300, 70)$	0.356 ± 0	8.366 ± 0.156
$m_{X,S} = (575, 200)$	0.889 ± 0	21.984 ± 0.193
$m_{X,S} = (650, 90)$	0.833 ± 0	23.052 ± 0.225
$m_{X,S} = (700, 570)$	1.094 ± 0	21.068 ± 0.186

Yields for Run 2

Main background $\gamma\gamma$ + jets (non resonant) 0

JRJC 2024

14

Parametrised neural network

Individual networks with parameters θ_a

Single network trained with input features and parameter

Training Setup:

- ^O Train two different PNN for Run 2 and Run 3
- Input variables: m_{bb} , $m_{bbyy}^* = m_{bbyy} - (m_{bb} - 125 \text{ GeV}), \theta = (m_X, m_S)$
- Final PNN score is used in binned likelihood to estimate limits and significance

^O Parametrised Neural Network (PNN) is an appropriate approach for this search which targets a large phase space of signals that differ from each other by 2 parameter m_X and m_S

^O PNNs are trained with a set of training variables (**x**) that will be used to discriminate signal from background and a set of parameters (θ). Alternatively, a standard NN is only trained on **x**.

Analysis strategy

Invariant photon mass distribution

Main background $\gamma\gamma$ + jets (non resonant) 0

- o Signal Region (SR) with mass window $m_{\gamma\gamma} \in [120, 130]$
- o Control Region (CR) with $m_{\gamma\gamma} < 120$ and $m_{\gamma\gamma} > 130$ is used to correct the normalisation of $\gamma\gamma$ + jets
- o Fit is blinded, we use simulation instead of data in SR
- o Fitting the PNN distribution in the SR
- o Fits are made without systematic uncertainties at the moment

PNN distribution

	-2sigma	-1sigma	Median	1sigma	
Run 2	0.111 fb	0.160 fb	0.247 fb	0.391 fb	
Run 3	0.244 fb	0.357 fb	0.560 fb	0.905 fb	
Run 2 + 3	0.094 fb	0.134 fb	0.202 fb	0.314 fb	
published Run 2	_	_	0.240 fb	_	

- ^O Difference of around 3% in median limit value for run 2 vs published run 2
 - o Consistent with difference in yields b/w previous analysis and new analysis
- ^O Adding partial Run 3 to Run 2 resulted in an improvement of around 20%

Ratio of Run 2 + Run 3 expected to published limits

- those from the previous Run 2 result
- o Adding partitial Run 3 to Run 2 resulted in an improvement 2 50 %

Grigorii Tolkachev

o Ratio of the 95% CL upper limits on the signal strength from the current Run 2 plus partial Run 3 analysis to

JRJC 2024

18

Summary

o Qualification Task in LAr Data Quality:

- o Doing LADIeS(LAr Data Investigation and Signoff) shifts
- o Developing the tools used for DQ assessment. Contribute to the study of the DT performance
- Photon identification:
 - o Retrieving photon MC-to-MC SFs between Full and Fast Simulation
- **Physics Analysis:**

o Moving PNN from legacy software to new one. PNN Validation. o Data/MC comparison. Combined fit results

Backup

