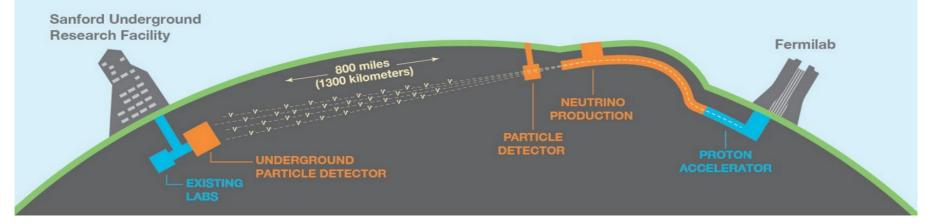


Sterile neutrino search with atmospheric neutrinos in DUNE

Camille Sironneau On behalf of the DUNE Collaboration

JRJC 29/11/24



Presentation of DUNE

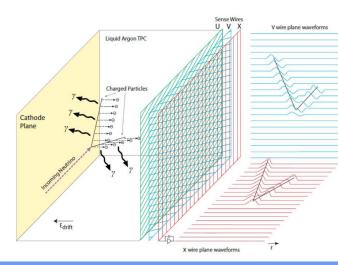
Camille Sironneau

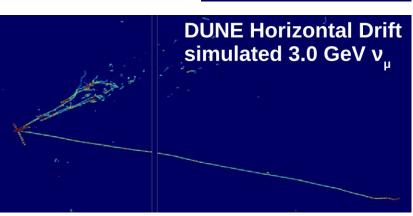
Presentation of DUNE

Goals

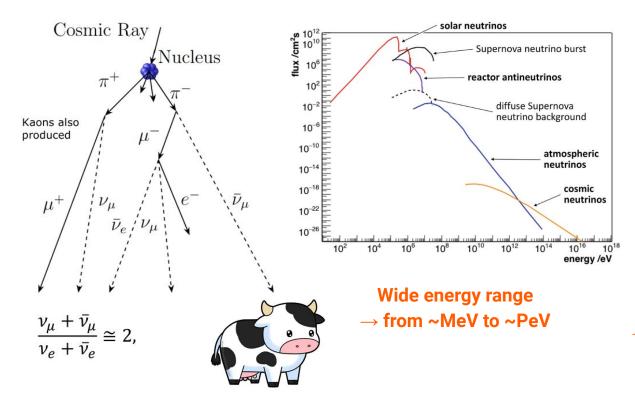
- Charge parity violation phase
- Neutrino mixing angles
- Neutrino mass hierarchy
- Search for proton decay
- Study of supernovae neutrinos

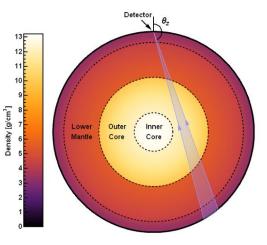
- Neutrino beam energy: 0.5 to 8 GeV
- Near Detector at 575m from the source
- Far Detector (FD) 1.5 km underground
- 4 LArTPCs modules of 17.5 kt each


Camille Sironneau


DUNE FD

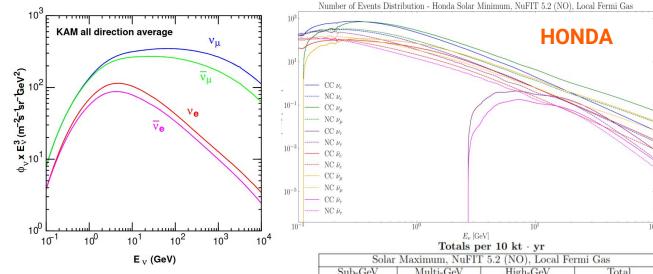
- LArTPC high resolution event imaging \rightarrow kinematic reconstruction of nu events
- Excellent event type classification (numu CC, nue CC, NC and potential for nutau)
- Excellent particle id (e, mu, proton)
- Photon Detection System: trigger, 3D reconstruction





Camille Sironneau

Atmospheric neutrinos

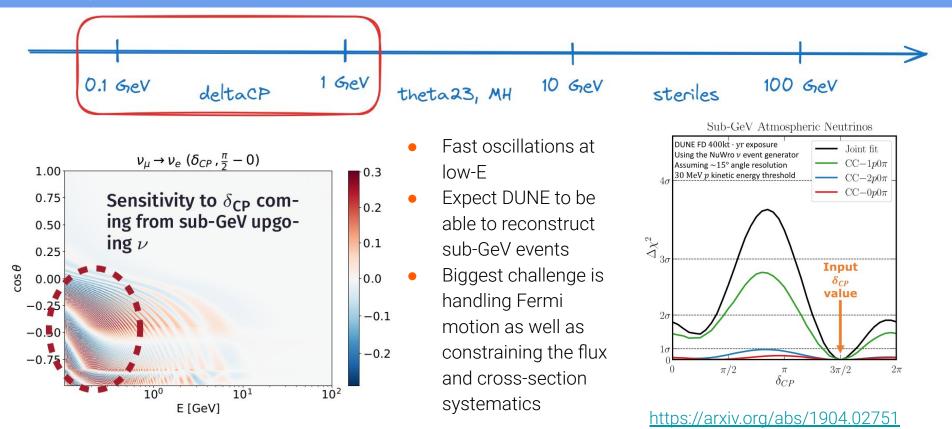


Come from every direction and go through different matter densities → different baselines/matter effects

Camille Sironneau

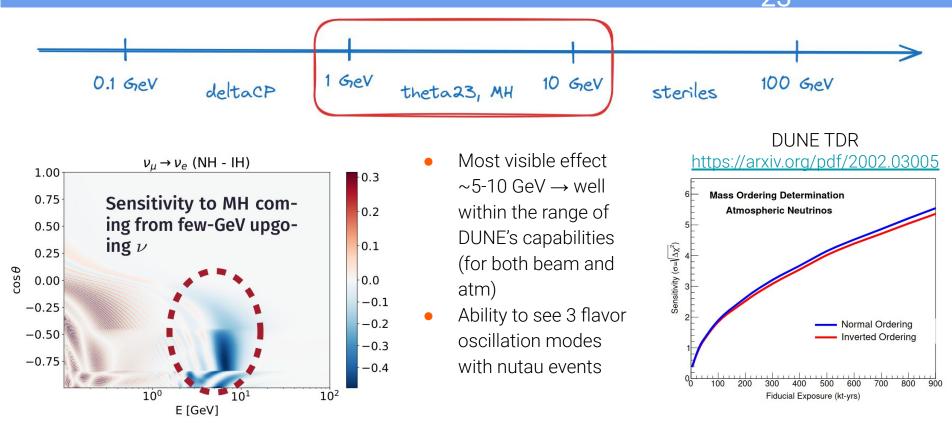
Atmospheric neutrinos

Constant flux of multiple flavors of neutrinos


		rotals per ro at gr			
	Solar Maximum, NuFIT 5.2 (NO), Local Fermi Gas				
	Sub-GeV	Multi-GeV	High-GeV	Total	
	$[0.1 - 1.0] { m GeV}$	$[1.0-10.0]\mathrm{GeV}$	$[10.0 - 100.0] \mathrm{GeV}$	$[0.1-100.0]\mathrm{GeV}$	
$CC\nu_e$	391.8	216.6	13.5	622.0	
$CC\nu_{\mu}$	389.9	319.1	41.4	750.4	
$CC\nu_{\tau}$	0.0	2.5	4.3	6.7	
$CC\bar{\nu}_e$	61.3	57.2	4.5	122.9	
$CC\bar{\nu}_{\mu}$	74.2	102.4	14.9	191.5	
$CC\bar{\nu}_{\tau}$	0.0	0.9	1.6	2.4	
NC	565.9	293.8	29.4	889.2	
Total	1483.1	992.5	109.5	2585.1	
Total	1483.1	992.5	109.5	2585.1	

- Extra source of neutrinos **in addition to beam**
- Relevant → will operate
 DUNE FD(s) for ~2 years
 without beam
 - Expect ~2000 atmospheric neutrino events per 10kt per year (including ~10 nutau events) → available data

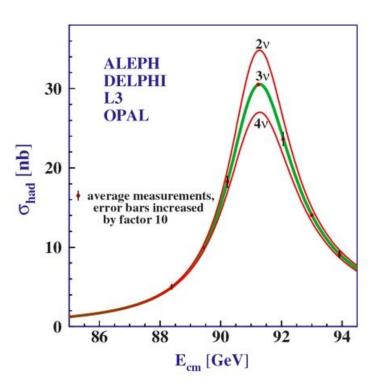
Marcelo Oliveira-Ismerio


Camille Sironneau

Physics with atmospherics : deltaCP

Camille Sironneau

Physics with atmospherics : MH and θ_{23}


Camille Sironneau

Physics with atmospherics : MH and θ_{23}

Camille Sironneau

The 3-Neutrino Model

While the 3 neutrino model is a good fit to most measurements, multiple anomalies have been detected by different experiments but it has been shown that there are only 3 "active" neutrino states

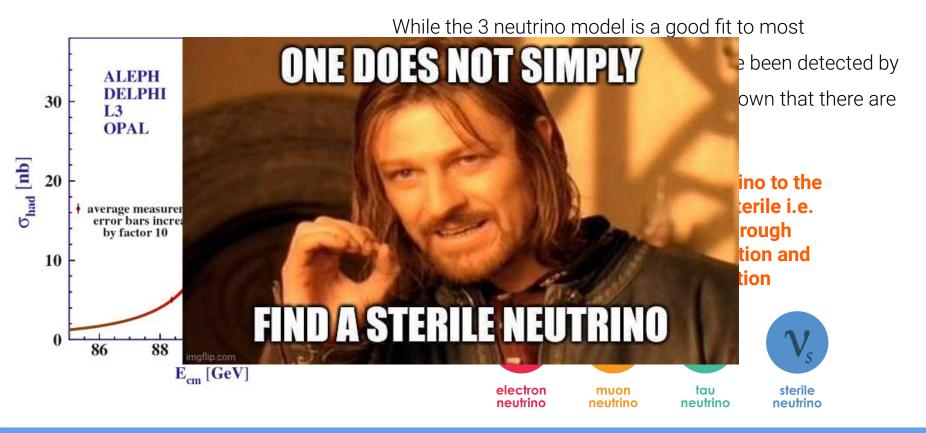
> If we add a new neutrino to the model, it has to be sterile i.e. interacting only through gravitational interaction and neutrino oscillation

muon

neutrino

tau

neutrino

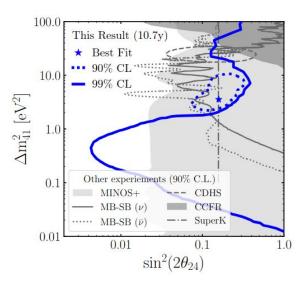

sterile neutrino

JRJC November 2024

electron

neutrino

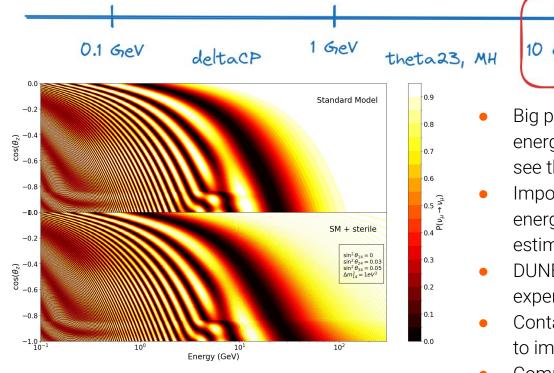
The 3-Neutrino Model



Camille Sironneau

Recent sterile studies

- Reactor experiments :
 - \rightarrow Double Chooz
 - \rightarrow **PROSPECT** and **STEREO** study the Reactor Antineutrino Anomaly
 - \rightarrow Future : JUNO with RENO 50 sensitive to "super light sterile neutrino"
- Accelerator experiments :
 - \rightarrow LSND, low energy beam of anti numu, look for excess in nue events
 - \rightarrow **MiniBooNE**, higher energies but same L/E
 - \rightarrow T2K, no evidence of sterile mixing in "3+1" model (2019 paper)
- Atmospherics / cosmic rays :
 - \rightarrow **IceCube**, sensitive to high energy events
 - \rightarrow KM3NeT
 - \rightarrow **SuperK**, set limit on sterile mixing to tau and mu
- Gallium based solar nu experiments :
 - \rightarrow GALLEX, SAGE, BEST : anomalies could be explained with $\Delta m^2 \sim 1 \text{ ev}^2$


https://arxiv.org/pdf/2405.08070

Latest results from IceCube show best fit point in region excluded by other atmospheric experiments

Camille Sironneau

Physics with atmospherics : sterile neutrinos

 $\sin^2\theta_{14} = 0, \ \sin^2\theta_{24} = 0.03, \ \sin^2\theta_{34} = 0.05, \ \Delta m_{14}^2 = 1 \ eV^2$

10 GeV steriles 100 GeV

- Big part of sterile neutrino effects are at high energy → atmospherics are good sources to see that
- Important to properly reconstruct events (both energy and angle) and tag neutrino flavors to estimate this
- DUNE could be competitive with other experiments for sterile mass < 1 eV²
- Containment effects will be challenging, plan is to improve reco with ML (see I Cheong's talk)
- Complementarity with beam

Camille Sironneau

Camille Sironneau

- Addition of a neutrino in model **modifies oscillation probabilities** and produces **appearance/disappearance of neutrino flavours** depending on energy/angle
- 6 new oscillation parameters : θ_{14} , θ_{24} , θ_{34} , Δm_{41}^2 , δ_{14} and δ_{24}
- Can compute **difference in expected number of events** assuming Standard Model and model with one sterile neutrino ("3+1" model)
 - \rightarrow see if difference can be seen with enough significance in our detector
- Simulation not fully ready so preliminary study with no data, just computations
- Example of calculation for v_{μ} events

 $N_{exp,ev} = \left[(\phi_{\nu\mu} P_{\mu\mu} + \phi_{\nue} P_{e\mu}) \sigma_{\nu\mu} + (\phi_{\overline{\nu\mu}} P_{\overline{\mu\mu}} + \phi_{\overline{\nue}} P_{\overline{e\mu}}) \sigma_{\overline{\nu\mu}} \right] \cdot N_{Ar} \cdot \Delta E \cdot \Delta \theta_z \cdot \Delta t$

Atmospheric neutrino flux for different flavors

Camille Sironneau

- Addition of a neutrino in model **modifies oscillation probabilities** and produces **appearance/disappearance of neutrino flavours** depending on energy/angle
- 6 new oscillation parameters : θ_{14} , θ_{24} , θ_{34} , Δm_{41}^2 , δ_{14} and δ_{24}
- Can compute **difference in expected number of events** assuming Standard Model and model with one sterile neutrino ("3+1" model)
 - \rightarrow see if difference can be seen with enough significance in our detector
- Simulation not fully ready so preliminary study with no data, just computations
- Example of calculation for v_{μ} events

 $N_{exp,ev} = \left[\left(\phi_{\nu_{\mu}} P_{\mu\mu} + \phi_{\nu_{e}} P_{e\mu} \right) \sigma_{\nu_{\mu}} + \left(\phi_{\overline{\nu_{\mu}}} P_{\overline{\mu}\overline{\mu}} + \phi_{\overline{\nu_{e}}} P_{\overline{e}\overline{\mu}} \right) \sigma_{\overline{\nu_{\mu}}} \right] \cdot N_{Ar} \cdot \Delta E \cdot \Delta \theta_{z} \cdot \Delta t$

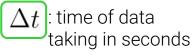
Oscillation probabilities to numu or numu_bar

Camille Sironneau

- Addition of a neutrino in model **modifies oscillation probabilities** and produces **appearance/disappearance of neutrino flavours** depending on energy/angle
- 6 new oscillation parameters : θ_{14} , θ_{24} , θ_{34} , Δm_{41}^2 , δ_{14} and δ_{24}
- Can compute **difference in expected number of events** assuming Standard Model and model with one sterile neutrino ("3+1" model)
 - \rightarrow see if difference can be seen with enough significance in our detector
- Simulation not fully ready so preliminary study with no data, just computations
- Example of calculation for v_{μ} events

 $N_{exp,ev} = \left[(\phi_{\nu_{\mu}} P_{\mu\mu} + \phi_{\nu_{e}} P_{e\mu}) \sigma_{\nu_{\mu}} + (\phi_{\overline{\nu_{\mu}}} P_{\overline{\mu\mu}} + \phi_{\overline{\nu_{e}}} P_{\overline{e\mu}}) \sigma_{\overline{\nu_{\mu}}} \right] \cdot N_{Ar} \cdot \Delta E \cdot \Delta \theta_{z} \cdot \Delta t$

Interaction cross section with Ar40


Camille Sironneau

- Addition of a neutrino in model **modifies oscillation probabilities** and produces appearance/disappearance of neutrino flavours depending on energy/angle
- **6** new oscillation parameters : θ_{14} , θ_{24} , θ_{34} , Δm_{41}^2 , δ_{14} and δ_{24}
- Can compute difference in expected number of events assuming Standard Model and model with one sterile neutrino ("3+1" model)
 - \rightarrow see if difference can be seen with enough significance in our detector
- Simulation not fully ready so preliminary study with no data, just computations
- F

• Example of calculation for
$$v_{\mu}$$
 events

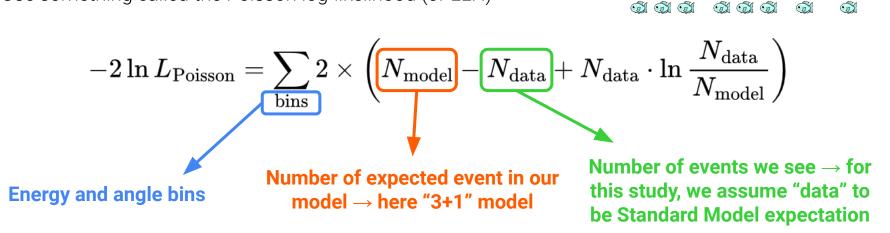
$$N_{exp,ev} = \left[(\phi_{\nu_{\mu}} P_{\mu\mu} + \phi_{\nu_{e}} P_{e\mu}) \sigma_{\nu_{\mu}} + (\phi_{\overline{\nu_{\mu}}} P_{\overline{\mu}\overline{\mu}} + \phi_{\overline{\nu_{e}}} P_{\overline{e}\overline{\mu}}) \sigma_{\overline{\nu_{\mu}}} \right] \left[N_{Ar} \cdot \Delta E \cdot \Delta P_{er} \cdot \Delta P_{er} \cdot \Delta E \cdot \Delta P_{er} \cdot \Delta P_{er} \cdot \Delta E \cdot \Delta P_{er} \cdot \Delta P_{er} \cdot \Delta E \cdot \Delta$$

$$N_{Ar} = \frac{m_{det}}{m_{Ar40}}$$

Number of target atoms

 ΔE , $\Delta heta_z$: width of the bins used for the histograms (binning is based on the flux histograms)

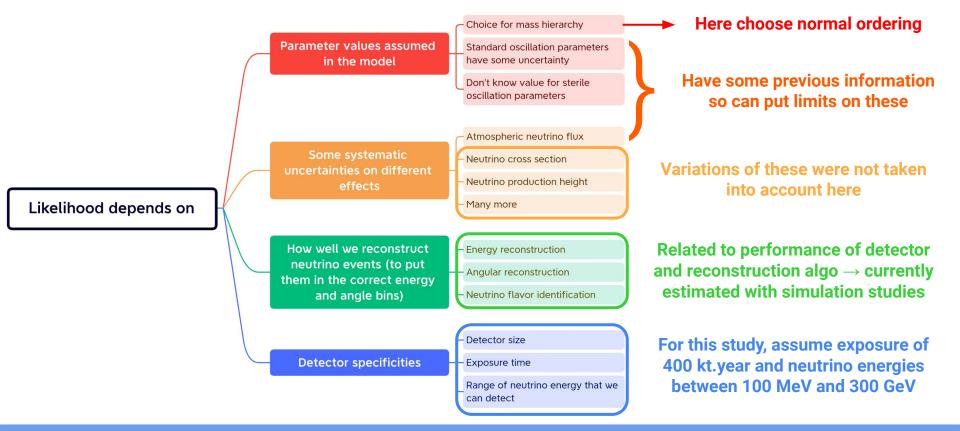
TISISWILL


РИТМУЛАТА

Camille Sironneau

Sensitivity

Use something called the Poisson log-likelihood (or LLH)


The big question : if we see some data in our detector, how can we say whether it's compatible or not with the potential existence of a sterile neutrino ?

The higher this value, the more incompatible the "data" is to the "3+1" model \rightarrow high LLH means that we have good confidence in distinguishing between "3+1" and SM

Camille Sironneau

What can impact the sensitivity?

Camille Sironneau

Minimum likelihood fit

Standard oscillation parameters can vary in a certain range defined by previous experiments

	Normal Ordering (best fit)		
	bfp $\pm 1\sigma$	3σ range	
$\sin^2 \theta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	
$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	
$\sin^2 \theta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	
$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	
$\sin^2 \theta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \to 0.02398$	
$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	
$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	

vith SK

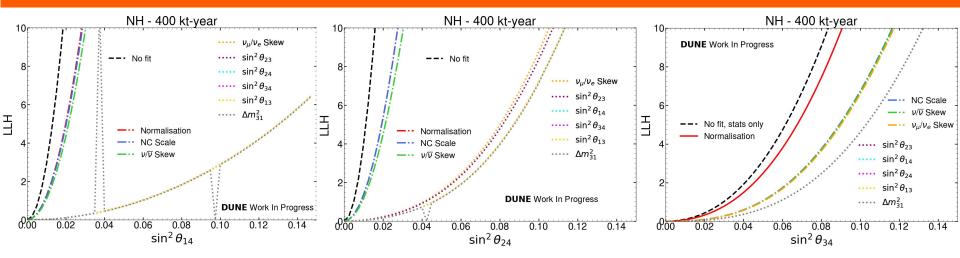
Atmospheric flux model involves different parameters that are not perfectly known

$$\begin{pmatrix} \phi^{\nu_e}(E,\cos\theta_z) \\ \phi^{\nu_\mu}(E,\cos\theta_z) \\ \phi^{\overline{\nu_e}}(E,\cos\theta_z) \\ \phi^{\overline{\nu_e}}(E,\cos\theta_z) \end{pmatrix}^{\gamma} \begin{pmatrix} w_{\nu_e}(r_{\mu,e},r_{\nu,\overline{\nu}}) \cdot f^{\nu_e}(E,\cos\theta_z) \\ w_{\nu_\mu}(r_{\mu,e},r_{\nu,\overline{\nu}}) \cdot f^{\overline{\nu_\mu}}(E,\cos\theta_z) \\ w_{\overline{\nu_e}}(r_{\mu,e},r_{\nu,\overline{\nu}}) \cdot f^{\overline{\nu_e}}(E,\cos\theta_z) \\ w_{\overline{\nu_\mu}}(r_{\mu,e},r_{\nu,\overline{\nu}}) \cdot f^{\overline{\nu_\mu}}(E,\cos\theta_z) \end{pmatrix}$$

 ϕ_0 : global normalization term γ : spectral distortion factor $r_{\mu,e}: v_{\mu}/v_e$ ratio $r_{v\overline{v}}: v/v$ ratio

Values for sterile parameters are not known so can also vary

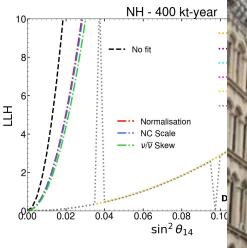
 \rightarrow Perform minimization of the Poisson LLH on all these parameters to get sensitivity \rightarrow low LLH is "worst-case scenario" where we can distinguish the least between SM and "3+1"


Camille Sironneau

Impact of fit parameters

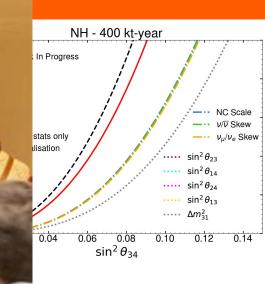
- Fitting all parameters at the same time can be very time consuming → good to see if can fix some
- Can fix θ_{12} and Δm_{21}^2 to their best fit value because don't expect DUNE to be sensitive to them (mostly constrained by solar neutrino experiments)
- Perform one-dimensional LLH fit studies to evaluate the impact of each individual systematic and fit parameter in the likelihood
- Release each parameter one by one to see impact it has on the fit → Start with no fit

Qualitative impact of fit parameters


• All systematic uncertainties have some impact in fit result for at least one of the sterile oscillation parameters

- With exception of θ_{23} , standard oscillation parameters have little to no impact in the results of the fit
- Cause of discontinuities investigated by changing order of parameter release: found to be related to Δm_{31}^2

 \rightarrow Decision to fix Δm_{31}^2 and θ_{13} to obtain global fit plots


Camille Sironneau

Qualitative

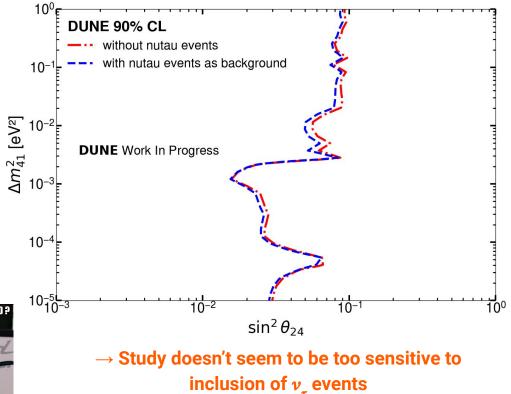
- All systematic uncerta
 - With exception of
 - Cause of discontinui

Now some non public plots (shhh, it's a secret)

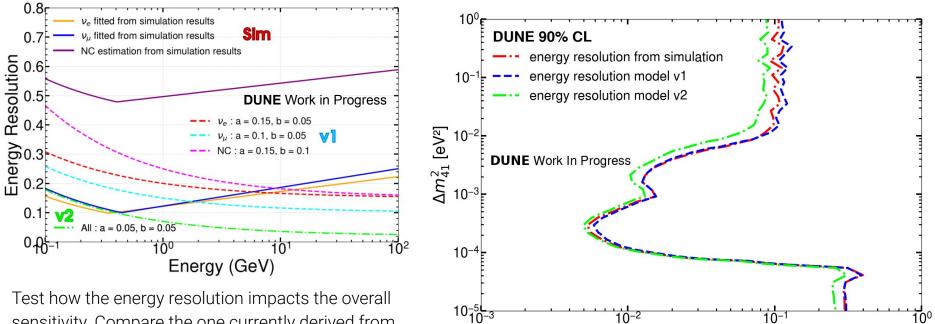
erile oscillation parameters in the results of the fit id to be related to Δm^2_{31}

Camille Sironneau

and tip con


Sensitivity contours : v_{τ} events

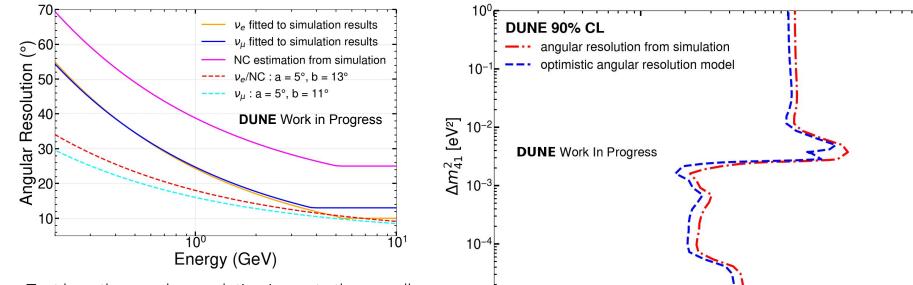
Consider 3 "classes" of events in the study : v_{μ} CC, v_{e} CC and NC


No studies available yet for reconstruction of atmospheric v_r events so can't put realistic parameters for resolution. Implement 2 "extreme" cases to evaluate potential effect :

- Assume they don't exist (not included in computations at all)
- Assume that they are fully mis-classified as other types of neutrinos (kind of a "background") in a way that's proportional to its interaction modes

Sensitivity contours : energy resolution

 \rightarrow Model v2 is very optimistic and shows potential limit to sensitivity improvement we could get wrt energy resolution


 $\sin^2 \theta_{14}$

sensitivity. Compare the one currently derived from simulation to 2 other models of the form

$$rac{\sigma_E}{E} = a + rac{b}{\sqrt{E}}$$

Camille Sironneau

Sensitivity contours : angular resolution

Test how the angular resolution impacts the overall sensitivity. Compare the one currently derived from simulation to a more optimistic one of the form

$$\sigma_{ heta} = a + rac{b}{\sqrt{E}}$$

→ Improving angular reconstruction could lead to overall improvement of sensitivity

 $\sin^2 \theta_{34}$

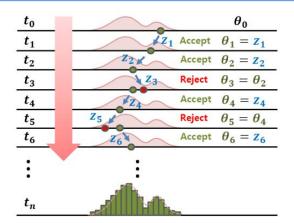
 10^{-1}

 10^{-2}

Camille Sironneau

JRJC November 2024

10-5L 10-3


 10°

What's next?

MaCh3 used as oscillation fitter → relies on the sampling of posterior likelihood using Markov Chains Implementation of DUNE atmospherics in MaCh3 ready to go

Next steps:

- First statistics-only fits with the reconstructed atmospheric sample
- Implementation of realistic flux, cross-section and detector systematics
- Currently working on implementing exotic neutrino models in MaCh3 to produce sterile neutrino sensitivity studies using the full DUNE simulation of atmospheric events

Camille Sironneau

60

Trugarez evit hoc'h evezh (Thanks for your attention !)

Camille Sironneau

Current info on oscillation parameters

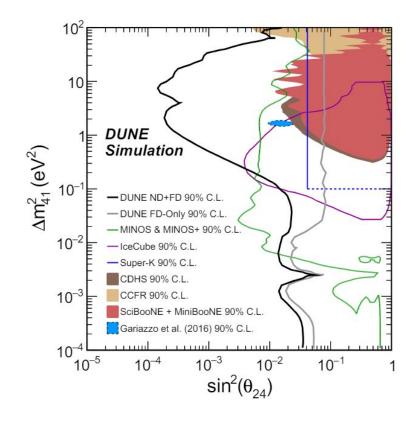
Global fit information

Global 6-parameter fit (including δ_{CP}):

- Solar: Cl + Ga + SK(1-4) + SNO-full (I+II+III) + Borexino;
- Atmospheric: SK-1 + SK-2 + SK-3 + SK-4; + IceCube
- Reactor: KamLAND + Double-Chooz + Daya-Bay + Reno;
- Accelerator: Minos (DIS+APP) + T2K (DIS+APP);

+ NOvA (DIS+APP)

- **0**₂₃ octant is not resolved yet (slight preference for the second octant)
- The sign of Δm²₃₂ is unknown (Normal Ordering preferred at ~2.5σ)
- δ_{CP} unknown: Some tension between current LBL and atm experiments in NO. CP-violation for IO at ~3σ

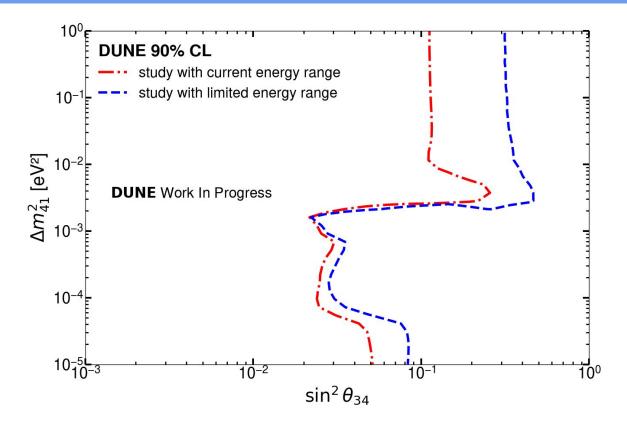

$$\theta_{12}$$
, Δm_{12}^2 = solar

$$\theta_{\rm 23}$$
 = atmos

 θ_{13} = reactor

Camille Sironneau

Sterile sensitivity with beam



Camille Sironneau

Sensitivity contours : energy range

Current energy range : [0.1, 300] GeV

Limited energy range : [0.5, 11.5] GeV

Camille Sironneau