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Standard Model of particle physics

e Describes the elementary
constituents of the Universe and
the interactions between them.

e Flavor violation has been
observed for quarks and
neutrinos.

— What about charged leptons ?

|

three generations of matter

interactions / force carriers

Standard Model of Elementary Particles
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Charged Lepton Flavor Violation (cLFV)
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Observation of cLFV would be a clear sign for BSM physics.
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Coherent neutrinoless conversion of a muon to an electron in a muonic atom

Decay In Orbit UN = evvN

g e A muon is captured in an outer shell of an
> atom (forming a “muonic atom”). The muon
& ) goes down energy levels emitting X-rays.
BSM / \ e Two possible processes according to SM:
Physics? /' /5 P 1€ proc g :
2 / 5 o Decay in Orbit (DI0),
| UN(Z) - WN'(Z - 1)
TS b ol e o Nuclear muon capture.

Free muon decay

e BSM process with well defined signature:

7 a single mono-energetic electron, emitted
] m, from the muonic atom at a well defined time
. after its creation.
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COMET Experiment at J-PARC

—s Model independent e pulsed proton beam on a fixed target;
e selection of low momenta pions, that decays into low

EEE-EI momenta muons;

e the muon beam is focused on an aluminium target to
produce muonic atoms. COMET will produce the most
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COMET Phases

WU Pion Capture Section

A section to capture pions with a large
solid angle under a high solenoidal
magnetic field by superconducting

Production maget
Target

COMET Phase-I

_Pions
DPetector Section
I A detector to search for
muon-to-electron conver-
sion processes.
Muons

8 GeV proton beam (3.2 kW)
Graphite proton target
1.2 109 stopped muons/s

D
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Pion-Decay and
Muon-Transport Section

A section to collect muons from
decay of pions under a solenoi- [ .................... Nﬂﬂﬂ

Aimed limits:
Phase-l — 10%-15
Phase-ll — 10717

dal magnetic field.
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Very high precision measurement
to constrain theoretical models!
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Phase-I Cylindrical detector (CyDet)

Superconducting coils CDC inner wall CDC outer wall cne e Cylindrical Drift
Chamber (CDC)
= 1o reconstruct the
S— track of the signal
electron.

e Cylindrical Trigger
Hodoscope (CTH)
< provides the

Trigger hodoscope trigger.

N
Vacuum window Shielding Cryostat wi-mm~ Return yoke



Cosmic Ray Veto (CRV)

P S ey o e Main background source for Phase-l:

Radiative muon capture 0.0019

Neutron emission after muon capture < 0.001 M

Charged particle emission after muon capture < 0.001 at m O S p h e r I C m u O n S .
Prompt Beam * Beam electrons

o — High energy muon can interact with matter
* Other beam particles

AlLC) Combined <0008 producing a signal-like electron.

Radiative pion capture 0.0028
Neutrons ~107° a . e .
Delayed Beam  Beam electrons ~0 —> A pOSItlve muon Can mISIdentIﬁed aS an
Muon decay in flight ~0
Pion d in flight ~0
Rl::iat?: )ll)il(l:n clagpllure ~0 e | e Ct ro n .
Antiproton-induced backgrounds 0.0012
Others Cosmic rays’ <0.01
Total 0.032
L Tr'tl:'hises(imaleiscnrrcm-li'—;n;dbycompulingresourccs. . Cosm iC rayS Ve.to System (Nanti—trigger) .
e

Fi Back

e Scintillators on the top, left and right surfaces
of the CRV.

e In the very high radiation sectors (Front &
Back): Resistive plate Chambers (RPCs)

(old design)



CTH MPPCs Quality Control

Goal: Ensure a good light collection
of photomultipliers used for CTH.

Function

Clock
Generator

Trigger Trigger

o Worked in Japan on a quality control
study of CTH Multi-Pixel Photon

o Liﬂ) -« ||| Counters (MPPCs or SiPM).
I Amplifier 1.1 Merger 1.1
g s = - I
‘-—| AmpI?erLZ |1—| Merger 1.2 l:j

e |
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e |

Pulsed Signal

Computer

«@

S Especially worked on the Data
L Acquisition (DAQ) system.
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Beam test at Paul Scherrer Institut

PAUL SCHERRER INSTITUT

Efficiencies & detectors response
measurements were performed for
the CTH.

Showed that CTH can be used to
distinguish p+ from e- under low
multiplicity.
o Reducing multiplicity

Lbetter discrimination.




Study of radiation levels on detectors - Software

Goal: Estimate radiation levels on detectors.

Proton target

e Simulation framework called ICEDUST,
based on GEANT4 and ROOT.

e Simulations include:
— proton on target interaction,
— beam transport to the detector,
— detector simulation.

e A script architecture was developed to
produce the simulations in an efficient
way at CC-IN2P3. This include an
automated bookkeeping system.




Study of radiation levels on detectors - Results

(working group with CMS researchers)
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Most intense muon beam — High rates are expected on Front CRV and CTH.

Goal: Reduce radiation levels to ensure sensitivity to new physics!




Neutron shielding materials

Working group : JC Angélique-JL Gabriel - LPC Caen T. Clouvel — C. Carlaganu - LPC Clermont

Neutron rate has an important
effect on the efficiency of the

All spectra on the same figure for comparison.

d eteCtor (a nd ItS d u ra_ bl I Ity) : Neutron beam attenuation with various types of shielding (10cm thickness)
Several  neutron  shielding o0
materials were tested: e |

10000 —— poly (10cm)
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Geometry and shielding optimization to reduce multiplicity in detectors

e Not a lot of space in downstream area. T 2\

e Some shielding hypothesis in upstream
area.
o positive effects but cost/efficiency
ratio not good enough.

e Changed the shape of the Front CRV
o good for front CRV but bad for CTH




Very prelimqinary results for detector Solenoid shielding hypothesis
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Study still ongoing, some shielding hypothesis could lead to positive results for both CRV and CTH.




Conclusion

e COMET experiment is searching for cLVF:
o A signal would be a clear sign of BSM physics,
o No signal with an improvement of the current limit would
help to constrain theoretical models.

e A really good precision is required to be sensitive to new physics.

e Some studies are being performed to ensure that detectors will
reach the required efficiency to push current limits.



