

Search for charged lepton flavor violation with the COMET experiment at J-PARC

Clermont

Auvergne

JRJC flavor physics session - 2024/11/26

Standard Model of particle physics

- Describes the elementary constituents of the Universe and the interactions between them.
- Flavor violation has been observed for quarks and neutrinos.
- \rightarrow What about charged leptons ?

Standard Model of Elementary Particles

Charged Lepton Flavor Violation (cLFV)

Observation of cLFV would be a clear sign for BSM physics.

Coherent neutrinoless conversion of a muon to an electron in a muonic atom

- A muon is captured in an outer shell of an atom (forming a "muonic atom"). The muon goes down energy levels emitting X-rays.
- Two possible processes according to SM:
 - Decay in Orbit (DIO),
 - Nuclear muon capture.
- BSM process with well defined signature: a single mono-energetic electron, emitted from the muonic atom at a well defined time after its creation.

$$E_{\mu e}=m_{\mu}-B_{\mu}-E_{recoil}.$$
 104.97 MeV for Al

COMET Experiment at J-PARC

\rightarrow Model independent

- pulsed proton beam on a fixed target;
- selection of low momenta pions, that decays into low momenta muons;
- the muon beam is focused on an aluminium target to produce muonic atoms. COMET will produce the most intense muon beam in the world.

COMET Phases

Phase I

MANAA

10000

Production

Target

Stopping Target

Phase-I Cylindrical detector (CyDet)

<u>Cylindrical Drift</u> <u>Chamber (CDC)</u> → to reconstruct the track of the signal electron.

 <u>Cylindrical Trigger</u> <u>Hodoscope (CTH)</u>
 → provides the trigger.

Cosmic Ray Veto (CRV)

Туре	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Antiproton-induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.01
Total		0.032

- Main background source for Phase-I: atmospheric muons.
 - \rightarrow High energy muon can interact with matter producing a signal-like electron.

 \rightarrow A positive muon can misidentified as an electron.

- Cosmic rays veto system (~anti-trigger).
- Scintillators on the top, left and right surfaces of the CRV.
- In the very high radiation sectors (Front & Back): Resistive plate Chambers (RPCs)

CTH MPPCs Quality Control

<u>Goal:</u> Ensure a good light collection of photomultipliers used for CTH.

Worked in Japan on a quality control study of CTH Multi-Pixel Photon Counters (MPPCs or SiPM).

Especially worked on the Data Acquisition (DAQ) system.

Beam test at Paul Scherrer Institut

PAUL SCHERRER INSTITUT

- Efficiencies & detectors response measurements were performed for the CTH.
- Showed that CTH can be used to distinguish µ+ from e- under low multiplicity.
 - Reducing multiplicity
 ↓ better discrimination.

Study of radiation levels on detectors - Software

Goal: Estimate radiation levels on detectors.

- Simulation framework called ICEDUST, based on GEANT4 and ROOT.
- Simulations include:
 - \rightarrow proton on target interaction,
 - \rightarrow beam transport to the detector,
 - \rightarrow detector simulation.
- A script architecture was developed to produce the simulations in an efficient way at CC-IN2P3. This include an automated bookkeeping system.

Study of radiation levels on detectors - Results

(working group with CMS researchers)

Most intense muon beam \rightarrow High rates are expected on Front CRV and CTH.

Goal: Reduce radiation levels to ensure sensitivity to new physics!

Neutron shielding materials

Neutron rate has an important effect on the efficiency of the detector (and its durability). Several neutron shielding materials were tested:

- Polyethylene
- Polyethylene 5% Boron
- Polyethylene 30% Boron
- Magnesium Borohydride

Working group : JC Angélique-JL Gabriel - LPC Caen T. Clouvel - C. Carlaganu - LPC Clermont

All spectra on the same figure for comparison.

Geometry and shielding optimization to reduce multiplicity in detectors

- Not a lot of space in downstream area.
- Some shielding hypothesis in upstream area.
 - positive effects but cost/efficiency ratio not good enough.
- Changed the shape of the Front CRV
 - good for front CRV but bad for CTH

Very preliminary results for detector Solenoid shielding hypothesis

No_Shielding: Weighted rate [Hz/cm²]

Study still ongoing, some shielding hypothesis could lead to positive results for both CRV and CTH.

Conclusion

- COMET experiment is searching for cLVF:
 - A signal would be a clear sign of BSM physics,
 - No signal with an improvement of the current limit would help to constrain theoretical models.
- A really good precision is required to be sensitive to new physics.
- Some studies are being performed to ensure that detectors will reach the required efficiency to push current limits.