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Credit : in prep. ZTF “DR2” Data paper, Smith et al.

μcorr = mmax
B − Mmax

B + αx1 − βc

Corrections

‘Slower-brighter’ : x1


‘Brighter-bluer’ : cTripp relation (1998) :

Lightcurves of ZTF20abxzrqw

x1

C

Photometric standardisation

SNe Ia dispersion :




with Photometric standardisation
σmag = 0.40 = 0.15

Problem : The origin of the 
dispersion of 0.15 mag is 

unknown
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Lightcurves of ZTF20abxzrqw

In ztf-g, ztf-r, ztf-i filters

Synthetic photometry in ZTF filters

ZTF20abxzrqw at phase +1.29

Spectro-photometry

Time series of SN2011fe

between -15 to +100 days

Credit: Pereira et al. 2013

A lightcurve datapoint corresponds

to the spectrum integrated in the


bandpass

—> New standardisation of distance 
modulus, using spectral information?
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Initial discovery : 
Twins - Fakhouri 2015 

Spectral time-series of two ‘Twins’ SNe 

Credit : Fakhouri et al. 2015

Spectro-photometric standardisation

Luminosity RMS for different ‘twinness’ bins

Credit : Fakhouri et al. 2015

—> Only one spectrum at maximum per SN Ia 
is sufficient to have the variation information

—> magnitude dispersion is smaller for the lowest 
‘twinness’ parameters
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Spectro-photometric standardisation
Full method : 

Twins Embedding - Boone 2021 

Twins Embedding components variation effects 
on spectra.  Credit : Boone et al. 2021

SNFactory : ~250 SNe


ZTF : ~700 SNe 

(for now)

Before standardisation :


magσmag = 0.40

Photometry :


magσmag = 0.15

Twins Embedding :


magσmag = 0.07

With SNFactory 

—> New standardisation of 
distance modulus, using 

spectral information

-> Describe the spectral 
variation at phase=0
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Zwicky Transient Facility

ZTF Camera P48 FoV 

Source : Joel Johansson

SEDm (P60)- Integral field Spectrograph

Source : N. Blagorodnova et al. 2018

Low-redshift z<0.15

Northern sky 


3 filters : g, r, i

Limits in magnitude of ~20mag

March 2018 to 2027

Two instruments : 

 P48 camera 

 P60 spectrograph

Located in Mount 
Palomar in 
California
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SEDm (P60)- Integral field Spectrograph 

field of view of ZTF18abqlpgq

Source : pysedm - Rigault, Neill 

Purpose : typing and redshift


Low resolution :  


Optical window: 3,650 - 10,000 Å

Acquisition of ~1 hour

R =
λ

Δλ
∼ 100

SEDm reconstructed image |  Åλ ∈ [5000,8000]

SEDmachine

✦ spectral extraction by pysedm. (Rigault 2019)

✦ Correction of host galaxy by Hypergal (Lezmy 2022)

o(3600) Supernovae Ia 

o(4000) spectra

14 %

5 %
6 %
6 %

8 %

16 %

46 %

SEDm

60% SNe Ia 
spectra from the 

SEDm

Source: Transient Name Server  
wis-tns.org/stats-maps

All the classified 
SNe spectra in 

the world

March 2018 to December 2020
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ZTF spectra flux-calibration

Median+nMAD of 752 ZTF flux-calibrated spectra

at z=0.05 

For phases in [-5,5], and cosmo cutsExemple of flux calibration 

with ZTF20aayvubx_20200524_SEDm_0

Flux calibration


Milky Way 
correction


Shift spectra to 
z=0.05
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ZTF spectra sample

—> The spectra sample is ready to test 
the standardisation

Cut Interval Quantity removed

from SEDm 40 %

Quality 20 %
z <0.1 around 7/8%

phase [-5,+5] days around 50%

cosmo around 15%

—> 752 spectra from 695 Sne Ia
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1.Generate at maximum luminosity

SNFactory spectra before/after dereddening, and residuals 
intrinsic dispersion (std) Credit : Boone et al. 2021

2.RBTL - fit one offset and a color outside the lines
 a magnitude offset compared to reference spectrum


  a color coefficient compared to reference spectrum
Δmi
ΔÃV,i

Capture 85% of the spectral time evolution variance 
common to every Sne between -5 and 5 days

Quadratic evolution in phase of SN Ia spectra

Twins Embedding - Boone et al. 2021
 3 steps 
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ZTF spectra before/after dereddening,  
and Spectral dispersion (nMAD) 


after RBTL correction for SNf and ZTF

Twins Embedding on ZTF

More red SNe in ZTF sample,

same distribution shape in magnitude
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1. Generate at maximum luminosity

3.Manifold Learning - parameters reduction
2. RBTL - fit one offset and a color outside the lines

Twins Embedding components variation effects 
on spectra.  Credit : Boone et al. 2021

87% of remaining variance explained with 3 components

Twins Embedding - Boone et al. 2021
 3 steps 

SNFactory spectra fluxes STD, in function of wavelengths, for 
different numbers of Manifold Learning components : 

parameter reduction.  Credit : Boone et al. 2021
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1. Generate at maximum luminosity

3.Manifold Learning - parameters reduction
2. RBTL - fit one offset and a color outside the lines

Twins Embedding - Boone et al. 2021
 3 steps 

Manifold standardisation 

(work in progress)

Twins Embedding :


magσmag = 0.07

With SNFactory 

—> what with ZTF ?

μ = mmax − Mmax − GP( ⃗ξ )

Normalised distributions 
of Manifold components 
for both ZTF and SNf 

•  matching


• Differences for  and , 
and outlyers have been 
removed

ξ2

ξ1 ξ3

RBTL standardisation 

linear correction

μ = mmax − Mmax − α ⋅ ΔAV
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RBTL linear standardisation

Δμ = μz=0.05 − (mband − Moffset)
−α ⋅ ΔAV

For SNFactory sample

168 SNe Ia before/after standardisation 
after a cut on DAv < 0.5
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RBTL linear standardisation

647 SNe Ia before/after standardisation 
after a cut on DAv < 0.5 (remove around 7% SNe)

Δμ = μz=0.05 − (mband − Moffset)
−α ⋅ ΔAV

For ZTF sample

Comparable dispersion that 
photometric standardisation 

with only 1 parameter
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Differential time evolution model

Capture 84.6% of the spectral evolution variance 
common to every Sne between -5 and 5 days

with  the phase, 

 the coefficients common to all Sne


 the magnitude of the SN i

p
c1,2(λk)
mi(p, λk)

Formula of quadratic evolution in phase :

Fitted parameters :

 the model flux of spectrum s

 the model uncertainties common to all Sne,


 the gray offset of the spectrum s

 the coefficients common to all Sne


Known:

 the observed flux of spectrum s

fs(p, λk)
ϵ(p, λk)
mgray,s
c1,2(λk)

fobs(p, λk)

Quadratic evolution in phase of SN Ia spectra

STEP 1 => Spectra @ max

meas., s

tot., s

tot., s
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Read between the lines (RBTL)

Remove variability:

• Magnitude offset (e.g peculiar velocity of host)

• Extinction (e.g Dust in the host)

Fitted parameters :

 the offset with mean for SN i


 the extinction coefficient  for SN i

 the intrinsic dispersion (common to all)


Known:

/  the spectrum flux/uncertainty at max for SN i


 the mean spectrum at max

 the extinction law (Fitzpatrick 99)

Δmi
ΔÃV,i
η(λk)

fmax,i(λk) σ2
fmax,i(λk)

fmean(λk)
C(λk)

Fit all together with bayesian inference :

Areas with large intrinsic dispersion (  ) are 
deweight during the fit :

η(λk)

STEP 2 => Explain Scatter 
Between the lines

Capture Grey scatter + Extinction
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Read between the lines (RBTL)

Areas with large intrinsic dispersion (  ) are 
deweight during the fit

η(λk)
SNFactory spectra before/after dereddening, and 

residual intrinsic dispersion (std) - from Boone 2021

η(λk)
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The Twins Embedding parameters space

Spectral distance between two Sne I and j :

Isomap algorithm embed high-dimensional space 
to low-dimentional while preserving distances

But it does not provide a model of a spectrum 
given its coordinates in the embedding : for that 

they use Gaussian Process

86.6% of variance explained with 3 components
Fraction of the variance explained for different models - 

from Boone 2021

STEP 3 => Explain η(λk)
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Twins Embedding three components variation effects 
Figure from Boone 2021

The Twins Embedding parameters space

From K.Boone et al. 2021. SN Factory spectra fluxes STD, in 
function of wavelengths, for different numbers of Manifold 
Learning components (parameters reduction) 

η(λk)

STEP 3 => Explain η(λk)

Dependancy of the variance explained with S/N 
and binning

Fr
ac

tio
n 

of
 V

ar
ia

nc
e 

Ex
pl

ai
ne

d
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The standardisation using Twins Embedding
To map the magnitude residuals through the TE 

space : linear standardisation not sufficient, 
instead Gaussian Process regression :

Fitted parameters : 
  a common reference magnitude 

 a linear correction term 
 the unexplained residual dispersion 

 the GP kernel parameters 

Known : 
 the magnitudes residuals of the RBTL , 

 the reddening coefficients , 

 the coordinates  in the TE space,  
 the host galaxy peculiar velocity variance

mref

ω
σu

A, l

⃗mRBTL⃗ΔAV
⃗ξ
⃗σ 2
p.v.

Before/after correction of magnitude residuals with GP 
from Boone 2021b
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Sky Map of the 2663 SNe Ia redshifts 

Credit : in prep. ZTF “DR2” Data paper, Smith et al.

2622 standardized SNe Ia, after minimal cuts

Credit : ZTF “DR2” Overview paper, Rigault et al.

ZTF - DR2
March 2018 to December 2020


