

LST-1: Ensuring a correct pointing & Improving our GRB detection ability

JRJC – 27 November 2024

Léo Le Moigne – under the supervision of Armand Fiasson, David Sanchez and Edna Ruiz Velasco, on behalf of the CTAO collaboration

CTAO – Quick presentation

Bending Model

What is it? Why do we need it? How can we improve it?

Gamma Ray Burst Analysis

What are GRBs? Why are they so important? Can we improve the detection ability?

CTAO: array of imaging atmospheric Cherenkov telescopes

- \rightarrow 2 sites in each hemisphere
- $\rightarrow\,$ 3 types of telescopes to cover from 20 GeV to 100 TeV

Illustration of the future CTAO South site, Credit : Gabriel Pérez Diaz (IAC)/Marc-André Besel (CTAO)/ESO/ N. Risinger (skysurvey.org)

CTAO: array of imaging atmospheric Cherenkov telescopes

 \rightarrow LST-1: first telescope of the array

LST-1 picture, at twilight

LST-1 moving

CTAO: array of imaging atmospheric Cherenkov telescopes

 \rightarrow Detection principle

Working principle of LST-1 (don't judge please, I did this gif myself)

Scheme of the electromagnetic shower Credit: J.A. Hinton and W. Hofmann

Bending Model: Ensuring a correct pointing

Working principle, Optimization, Improvements

Goal

developed at LAPP by a former phd student, Mathieu de Bony

 \rightarrow taking into account the deformation of the structure

=> correcting the <u>systematic errors</u> of the pointing (< 1 arc-minute)

Goal

- $\rightarrow\,$ taking into account the deformation of the structure
 - => correcting the <u>systematic errors</u> of the pointing (< 1 arc-minute)

Pictures of the CDM, at the center of the dish

Goal

- $\rightarrow\,$ taking into account the deformation of the structure
 - => correcting the <u>systematic errors</u> of the pointing

Sketch of the CDM field of view

 \rightarrow derive a mechanical model from star misspointing

Example of an observation

 \rightarrow derive a mechanical model from star misspointing

Example of an observation

LST-1 picture, with LEDs switched on

LEDs picture

 \rightarrow derive a mechanical model from star misspointing

Example of an observation

LST-1 picture, with LEDs switched on

LEDs picture

 \rightarrow derive a mechanical model from star misspointing

Example of an observation

 \rightarrow derive a mechanical model from star misspointing

Distributions of (a) pointed stars between over a certain period and (b) corresponding misspointing, in polar representation

 \rightarrow derive a mechanical model from star misspointing

Compute the misspointing for each point, with mechanical model

Distribution of miss-pointing compared with the predicted miss-pointing evaluated with mechanical model, in polar representation

 \rightarrow 9h/Moon cycle, *time is precious* !

Questions:

• how many stars do we need to ensure a robust mechanical model ?

• how can we gain time on data taking ?

 \rightarrow 9h/Moon cycle, *time is precious* !

Questions:

• how many stars do we need to ensure a robust mechanical model ?

• how can we gain time on data taking ?

100 points in the sky grid seems to be a good approximation

 \rightarrow 9h/Moon cycle, *time is precious* !

Questions:

• how many stars do we need to ensure a robust mechanical model ?

• how can we gain time on data taking ?

Bending model data taking can be done in **Moon condition** (not causing parasite light)

 \rightarrow 9h/Moon cycle, *time is precious* !

Questions:

• how many stars do we need to ensure a robust mechanical model ?

how can we gain time on data taking ?

Bending model data taking can be done in **Moon condition** (not causing parasite light)

Optimize observation sequence

 $\rightarrow\,$ add scheduler process in the bending model code

Sequence

- → select a star
 - go to star position
 - data acquisition LEDs
 - data acquisition star
 - go position dark
 - data acquisition dark
 - transfer data

Distribution of the end event times, relatively to the start of the observation

 $\rightarrow\,$ add scheduler process in the bending model code

Sequence

New sequence

- select a star
 - go to star position
 - data acquisition LEDs
 - data acquisition star
 - go position dark
 - data acquisition dark
 - transfer data

- select a star (only first observation)
- → go to star position
 - data acquisition LEDs
 - data acquisition star
 - go position dark
 - data acquisition dark + select next star
- --- transfer data

 \rightarrow add scheduler process in the bending model code

How much time can be gained for each observation ?

 \rightarrow add scheduler process in the bending model code

How much time can be gained for each observation ?

June 2023

Distribution of dark patch data taking duration, since June 2023

 \rightarrow add scheduler process in the bending model code

First results

Tests have been done the 23rd and the 29th of October

 \rightarrow over 2 observations, <u>36 seconds</u> are gained

New mechanical model will be performed in December

→ wait & see...

Gamma Ray Burst: Improving our detection ability Analysis methods & first results

Context

with Mathieu de Bony and Edna Ruiz Velasco

- → Gamma Ray Burst (GRB)
 - transient events
 - extragalactic sources (isotropic distribution) cyan: WT settling - blue: WT - red: PC 10 Count Rate (0.3-10 keV) (s⁻¹) $F(t) \propto t^{-\alpha}$ 0.1 0.01 1000 100 104 Time since BAT trigger (s) GRB220306B light curve, fitted with a power law (Swift/XRT data)

GRB artist impression

Context

with Mathieu de Bony and Edna Ruiz Velasco

- → Gamma Ray Burst (GRB)
 - transient events

Methods

 \rightarrow observation of two regions

 N_{ON} counts during T_{ON}

 N_{OFF} counts during T_{OFF}

Methods

 $\rightarrow\,$ observation of two regions

 N_{ON} counts during T_{ON}

Definition of background and signal

$$\overline{s} + \overline{b} = \frac{\langle N_{ON} \rangle}{T_{ON}}$$

$$\overline{b} = rac{\langle N_{OFF} \rangle}{T_{OFF}}$$

 N_{OFF} counts during T_{OFF}

Gamma Ray Burst analysis

PP

Gamma Ray Burst analysis

 \rightarrow Li&Ma time dependent:

Gamma Ray Burst analysis

 \rightarrow Perform ratio test:

with L₀, the likelihood of the null hypothesis (only background)

 $TS = -2\log\left(\frac{L_0}{I}\right)$

 \rightarrow Compute significance of the source:

 $\Rightarrow \sigma > 5$: detection !

$$\sigma = \sqrt{TS}$$

KRAMPOUZ 27/11/2024

ON

+bkg

OFF

bkg

- \rightarrow generate simulated bursts with parameters:
 - delay
 - temporal index $\boldsymbol{\alpha}$
 - spectral index $\ensuremath{\mathsf{\Gamma}}$
 - normalization ϕ_0
 - redshift z

Assuming:

power law spectral model

$$\phi(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-1}$$

power law temporal model

$$F(t) = \left(\frac{t - t_{ref}}{t_0}\right)^{-\alpha}$$

- \rightarrow generate simulated bursts with parameters:
 - delay
 - temporal index $\boldsymbol{\alpha}$
 - spectral index $\ensuremath{\mathsf{\Gamma}}$
 - normalization φ_0
 - redshift z
- \rightarrow compute:
 - Significance
 - Time dependent significance

Assuming:

power law spectral model

$$\phi(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-1}$$

power law temporal model

$$F(t) = \left(\frac{t - t_{ref}}{t_0}\right)^{-c}$$

 \rightarrow results with 50,000 simulations

Plot of the significance computed with tdep depending on the classic Li&Ma significance

Plot of the significance computed with tdep depending on the classic Li&Ma significance

Plot of the significance computed with tdep depending on the classic Li&Ma significance (zoom around 5σ)

Plot of the significance computed with tdep depending on the classic Li&Ma significance Evolution of the significance depending on time, with both methods

Plot of the significance computed with tdep depending on the classic Li&Ma significance Evolution of the significance depending on time, with both methods

 \rightarrow results with 50,000 simulations

In which cases does time dependent Li&Ma performs better ?

 \rightarrow results with 50,000 simulations

In which cases does time dependent Li&Ma performs better ?

Li&Ma time dependent performs better for GRBs with very **sharply temporal** evolution (i.e. high α)

Temporal evolution: $F(t) \propto t^{-\alpha}$

Coming soon...

 \rightarrow new method, developed by Mathieu de Bony

Plot of the significance computed with STF method depending on the classic tdep Li&Ma significance

Coming soon...

Plot of the significance computed with STF method depending on the classic tdep Li&Ma significance

SPECTRAL TEMPORAL FIT

- \rightarrow appears to be performing better
- $\rightarrow\,$ still ~10% of the fit are failing

Conclusion

Bending Model

- new bending model for the next LSTs
- calibration of new CDMs

Picture of the CTAO North site, with the 4 LSTs (September 2024)

Bending Model

- new bending model for the next LSTs
- calibration of new CDMs

Gamma Ray Burst

- article on analysis methods
- article on GRB catalog

THIS FOR YOUR FITE HOD

Back up - Part I Bending Model

Working principle: fit the center of the camera with the LEDs

Sky grid: impact of a biased dataset

 \rightarrow dataset used as a reference

Conditions : - correct repartition of the observations in the grid

- rather short period
- no OARL problems

Choice : from 1^{st} of April to 1^{st} of June

name	value	standard error	relative error	initial value	min	max	varv
AzEncoderShift	-89.2668883	12.4555810	(13.95%)	-49.45697415060795	-3600.00000	3600.00000	True
ZdEnodercShift	96.9081860	3.53827509	(3.65%)	113.39677416696668	-3600.00000	3600.00000	True
AltNonOrthogonality	35.1557247	3.32421149	(9.46%)	18.62210141639116	-3600.00000	3600.00000	True
AzNonVerticalityPhi	-191.257258	4.35101126	(2.27%)	-165.64267646108357	-360.000000	360.000000	True
AzNonVerticalityTheta	38.9776225	1.12350998	(2.88%)	37.4025104703328	-3600.00000	3600.00000	True
TelescopeBendingLin	-4.97996179	0.15222074	(3.06%)	-4.967946724361393	-10.0000000	10.0000000	True
TelescopeBendingQuad	0.03376945	0.00203067	(6.01%)	0.03405057373035647	-1.00000000	1.00000000	True
TelescopeToCameraAlpha	0.00000000	0.00000000		0.0	-1.00000000	1.00000000	False
CSSBendingLin	0.99999999	0.02417413	(2.42%)	0.8323424089095606	-1.00000000	1.00000000	True
OffsetOpticalAxisAzScan	0.30124737	5.2233e-04	(0.17%)	0.30106655416325845	-1.00000000	1.00000000	True
AmplitudeOpticalAxisAzScan	-0.00369529	6.7145e-04	(18.17%)	-0.003859152796957366	-1.00000000	1.00000000	True
OffsetElevationAxisAzScan	44.2902737	5.3198e-04	(0.00%)	44.30032352387971	0.00000000	90.0000000	True
AmplitudeElAxisAzScan	-0.00839285	8.4780e-04	(10.10%)	0.011053105594136081	-1.00000000	1.00000000	True
OARL1LEDShift	3.58920646	7.1223e-04	(0.02%)	3.58863984372369	2.00000000	5.00000000	True
OARL2LEDShift	3.56802705	7.1223e-04	(0.02%)	3.5629110624182836	2.00000000	5.00000000	True
ZdEncoderPlay	0.01350176	3.5098e-04	(2.60%)	0.013873682212690835	0.00000000	0.10000000	True
CSSBendingQuad	3.4205e-04	7.2016e-04	(210.54%)	0.0014596845761847277	-1.00000000	1.00000000	True
CSSAssymetricalEffectLin	2.51293567	0.29160683	(11.60%)	1.8283115937501861	-3600.00000	3600.00000	True
CSSAssymetricalEffectQuad	-0.01226263	0.00162158	(13.22%)	-0.008491107147619914	-3600.00000	3600.00000	True

Observations grid for the selected period

Sky grid: impact of a biased dataset

→ impact of a biased dataset on the mechanical model parameters

Grid for dataset with azimuth selection

Dispersion of the AzEncoderShift parameter values for both datasets

Time optimization: impact of the number of observations

- $\rightarrow\,$ fit of the model parameters
 - \rightarrow how many observations are needed ?

Distribution of the parameter values, fitted for different number of stars, for 200 random selection

Time optimization: impact of the number of observations

- $\rightarrow\,$ fit of the model parameters
 - \rightarrow how many observations are needed ?

100 points in the sky grid seems to be a good approximation, for the fit of the parameters

Distribution of the parameter values, fitted for different number of stars, for 200 random selection

Some observations: failing

 \rightarrow does the Moon have an impact on the success of BM data taking ?

Picture taken by the CDM, presenting strange effect due to parasite light

 \rightarrow change of reference, with the example of BM observation 970

Change of reference for the study

Telescope reference \rightarrow Dish reference


```
Back up - BM
```


Pointing reference, useful for the stacking of relative Moon position

Spatial distribution of the Moon position (for correct and rejected observations), in the dish reference

Bending model data taking can be done in Moon condition

CTA

Time optimization: scheduler process

 \rightarrow 2 processes communicating via a pipe

Back up - BM

Time optimization: scheduler process

- \rightarrow objective : recent full-sky view
- \rightarrow how does scheduler works ?

 associate each point with a priority (depending on the date of the last acquisition)

- determine if there is a valid star for each point
- select the star for each star region around the point:
 - \rightarrow altitude in observable range
 - \rightarrow distance with the Moon
 - \rightarrow no other star that could be detected
 - \rightarrow dark patch at 2°

 compute observation time for each star (depending on star magnitude and position)

Back up - Part II GRB analysis

$$L = \left(\prod_{t_i = (\Delta t, \dots, N\Delta t)} \frac{\left(\Delta t \left(b + s(t_i)\right)\right)^{\{0,1\}}}{\{0,1\}!} e^{-\Delta t \left(b + s(t_i)\right)}\right) \left(\frac{\left(b T_{OFF}\right)^{N_{OFF}}}{N_{OFF}!} e^{-b T_{OFF}}\right)$$

$$\rightarrow \text{ Definition of the signal: } s(t) = \theta f(t)$$

 \rightarrow Only 1 free parameter: amplitude of the signal θ

because b is defined with the identity: $b \frac{\partial \log L}{\partial b}(\theta) + \theta \frac{\partial \log L}{\partial \theta}(\theta) = 0$

 \rightarrow Maximize the likelihood by finding the root of the partial derivative:

$$\frac{\partial \log L}{\partial b}(\theta) = \frac{N_{OFF}}{b} + \sum_{t_i \in t_{ON}} \frac{1}{b + \theta f(t_i)} - (T_{ON} + T_{OFF})$$

 \rightarrow Evaluating the likelihood:

$$L = \left(\prod_{t_i = (\Delta t, \dots, N\Delta t)} \frac{\left(\Delta t \left(b + s(t_i)\right)\right)^{\{0,1\}}}{\{0,1\}!} e^{-\Delta t \left(b + s(t_i)\right)}\right) \left(\frac{\left(b T_{OFF}\right)^{N_{OFF}}}{N_{OFF}!} e^{-b T_{OFF}}\right)$$

 \rightarrow Simplification of the likelihood:

$$\lim_{N \to +\infty} L = (\Delta t^{N_{ON}} \prod_{t_i \in \{t_{ON}\}} (b + s(t_i))) \frac{(bT_{OFF})^{N_{OFF}}}{N_{OFF}!} e^{-b(T_{OFF} + T_{ON}) - \int_{0}^{T_{ON}} dt \, s(t)}$$

 \rightarrow With the identity:

$$\lim_{N \to +\infty} L = (\Delta t^{N_{ON}} \prod_{t_i \in \{t_{ON}\}} (b + s(t_i))) \frac{(b T_{OFF})^{N_{OFF}}}{N_{OFF}!} e^{-(N_{OFF} + N_{ON})}$$

→ Evaluating the significance:
$$TS = -2 \log(\frac{L_0}{L})$$
 $\sigma = \sqrt{TS}$

with
$$L_0 = \frac{e^{-\bar{b}_0 T_{ON}} (\bar{b}_0 T_{ON})^{N_{ON}}}{N_{ON}!} \frac{e^{-\bar{b}_0 T_{OFF}} (\bar{b}_0 T_{OFF})^{N_{OFF}}}{N_{OFF}!}$$

$$L = (\Delta t^{N_{ON}} \prod_{t_i \in \{t_{ON}\}} (b + s(t_i))) \frac{(bT_{OFF})^{N_{OFF}}}{N_{OFF}!} e^{-(N_{OFF} + N_{ON})}$$

and
$$b_0 = \frac{N_{ON} + N_{OFF}}{T_{ON} + T_{OFF}}$$
 $b = \frac{N_{ON} + N_{OFF} - \theta \int_0^{T_{ON}} dt f(t)}{T_{ON} + T_{OFF}}$ $s(t) = \theta f(t) - f(t) = t^{-1}$

 \rightarrow optimization issue

=> Need, in some cases, a negative amplitude

\rightarrow optimization issue

Plot of the partial derivative of the likelihood, depending on the amplitude of the signal, in the case of divergence with negative amplitude

In some cases, divergence for negative amplitude values

 \rightarrow choose carefully the range

 \rightarrow no root for ~0.7% of the analysis

Both partial derivative of log likelihood at b and θ , in the case where the identity is not respected

Spectral Temporal Fit: method (developed by Mathieu)

- \rightarrow spectral temporal fit
 - fit data with base model (no emission)
 - fit data with spectral model
 - fit data with temporal model
 - fit data with complete model (spectral + temporal)
 - evaluate significance of the complete model vs base model