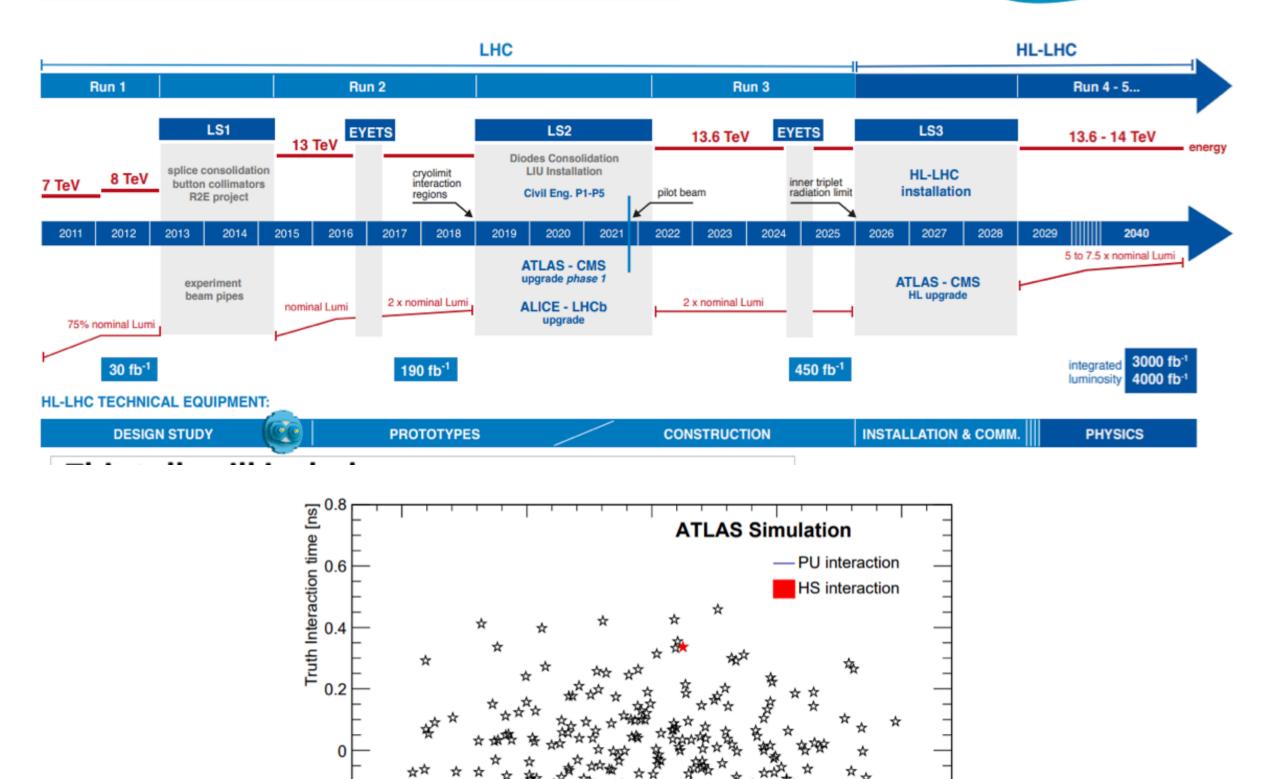
Assembly and Testing of HGTD Modules

Laboratoire de Physique des 2 Infinis

Marko Mihovilović



High-Luminosity LHC

LHC / HL-LHC Plan

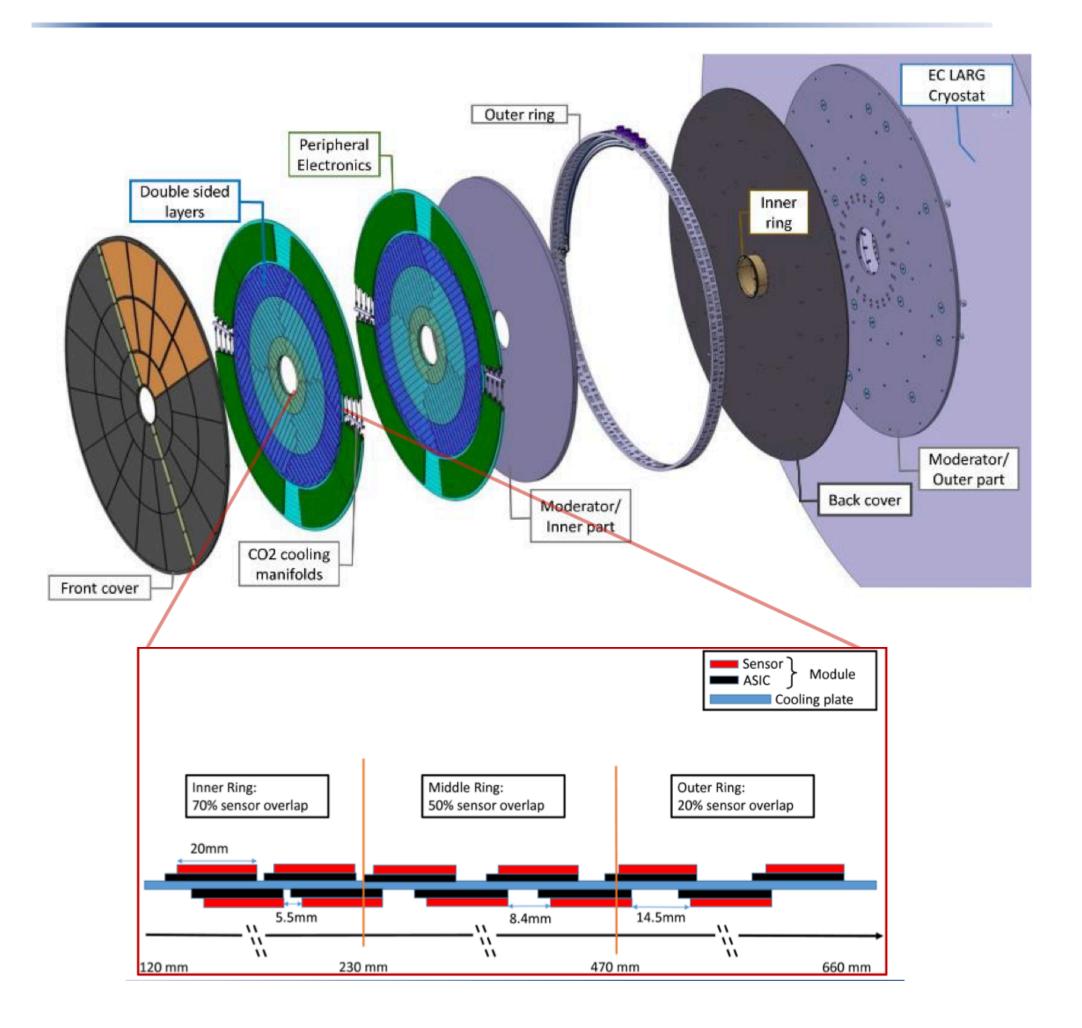
-100

-50

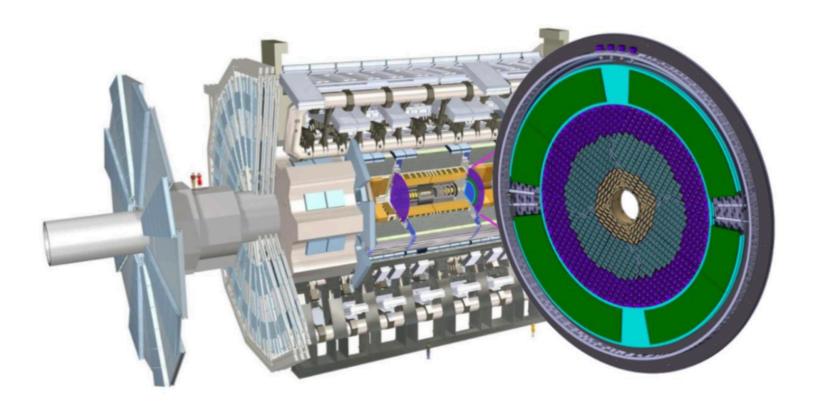
-0.4

-0.6

- LHC upgrade to HL-LHC: Planned to start operating in 2029
- Instantaneous luminosity 7.5 × 10^{34} cm⁻² s⁻¹
- Increase in luminosity results in more pile-up and radiation damage
- ATLAS experiment also needs to be upgraded to meet the new requirements
- High Granularity Timing Detector (HGTD) proposed in front of the end-cap calorimeter for pile-up mitigation
- Adding timing information in the end-cap region improves pile-up rejection and vertex reconstruction

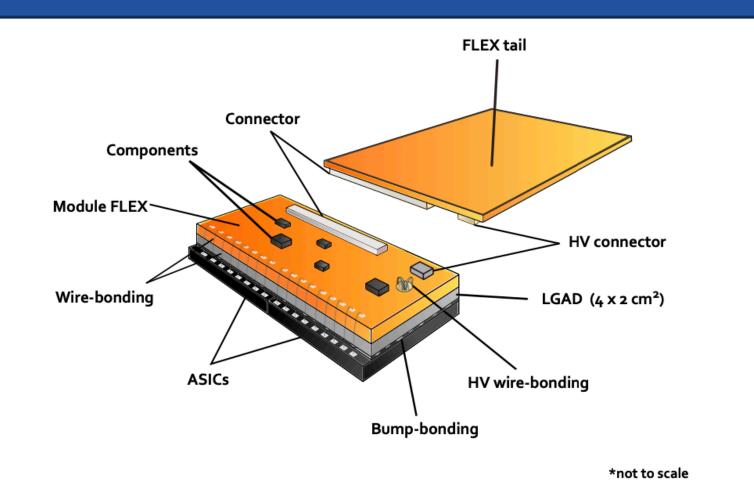

100

Truth Interaction z [mm]

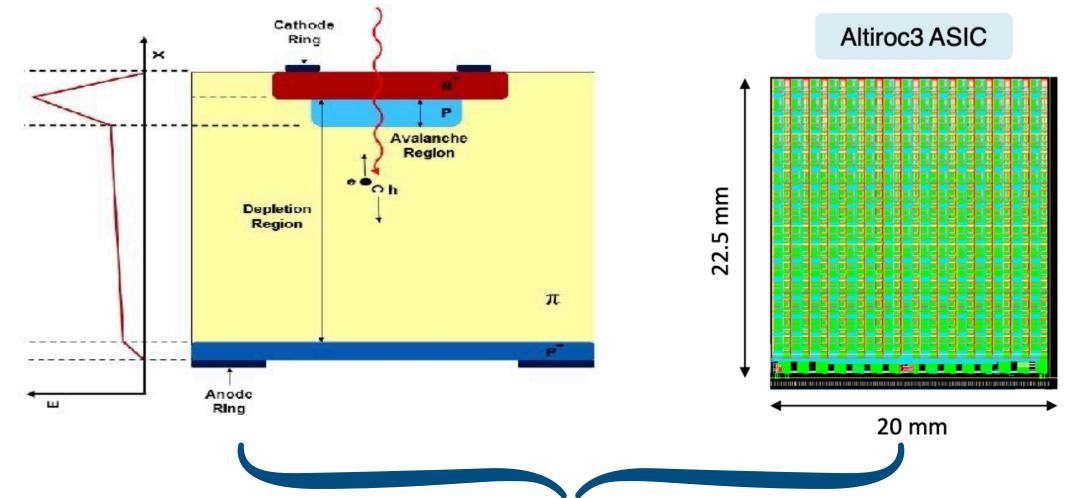


High Granularity Timing Detector

Marko Mihovilovic (IJCLab, UPS)



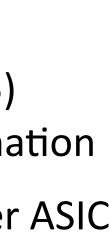
- Placed between the updated Inner Tracker (ITk) and the Liquid Argon Calorimeter
- Active area coverage: $2.5 < |\eta| < 4.0$
- Targets per track resolution 30-50 ps
- Operating temperature -30°C (CO₂ dual phase cooling)
- It consists of 8032 modules
 - ~2000 modules will be assembled at IJCLab (France)



The HGTD modules

- An HGTD module consists of
 - Two LGAD sensors (2 cm × 2 cm)
 - Two ALTIROC ASICs (2 cm × 2 cm) \bigcirc
 - A module flex
 - A flex tail 0

- Low Gain Avalanche Detectors (LGAD)
- p-n junction based n on p silicon 0 detector
- The usage of LGADs has a beneficial \bigcirc effect on time resolution
 - Vendors: IHEP-IME and USTC-IME


- - Process done at IFAE (Spain) and NCAP (China)

Marko Mihovilovic (IJCLab, UPS)

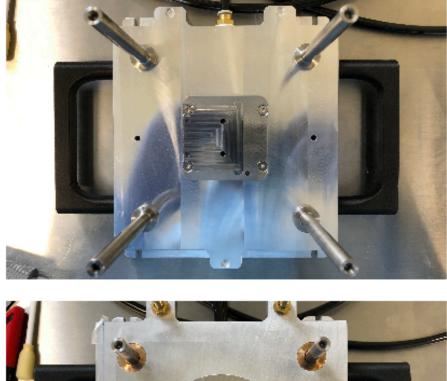
- **A**TLAS **L**GAD **T**iming **I**ntegrated 0 Read-Out Chip
- 225 readout channels (15×15) 0
- Provides TOA and TOT information 0
- Provides luminosity in hits per ASIC 0 per bunch crossing

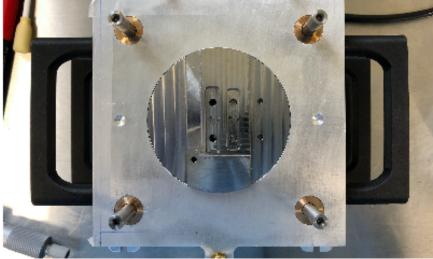

The sensor and the ASICs are connected through a flip-chip bump bonding process called hybridisation

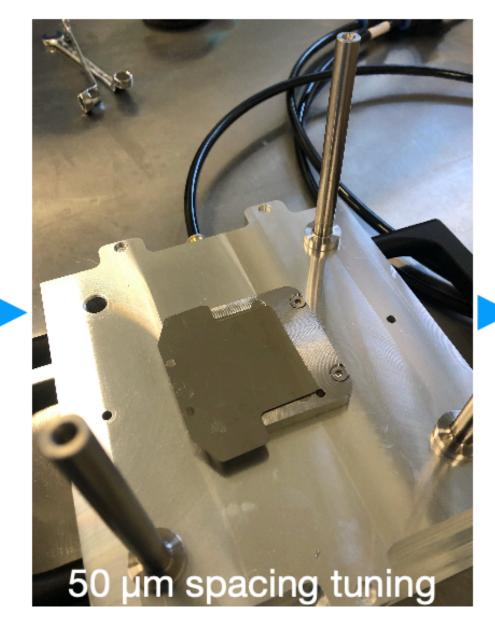
JRJC

Module assembly in France

Marko Mihovilovic (IJCLab, UPS)







Assembly procedure at IJCLab

Pieces are held in inlays with vacuum and aligned with a jig (mechanical alignment)

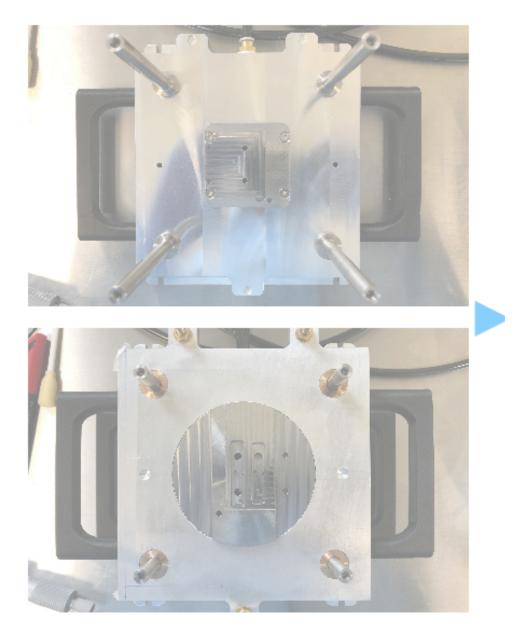
Vertical distance tuned with a calibrated thickness and controlled with small-step screws

A frame is used to hold in place a stencil for glue deposition and align dots with module flex surface

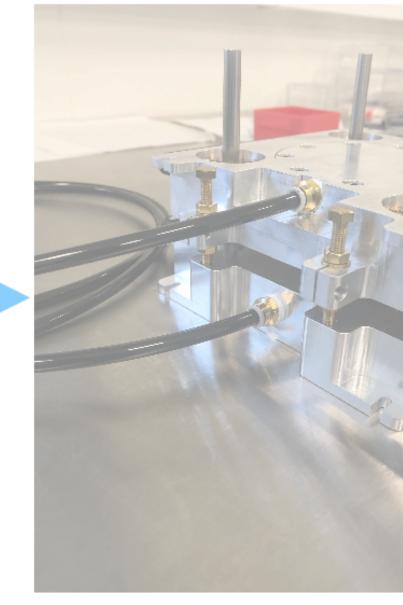
Marko Mihovilovic (IJCLab, UPS)

Glue dots are deposited on flex with the stencil

Close the jig, elements are hold in place. Cure glue for 7-8 hours



Assembly procedure at IJCLab


Pieces are held in inlays with vacuum and aligned with a jig (mechanical alignment)

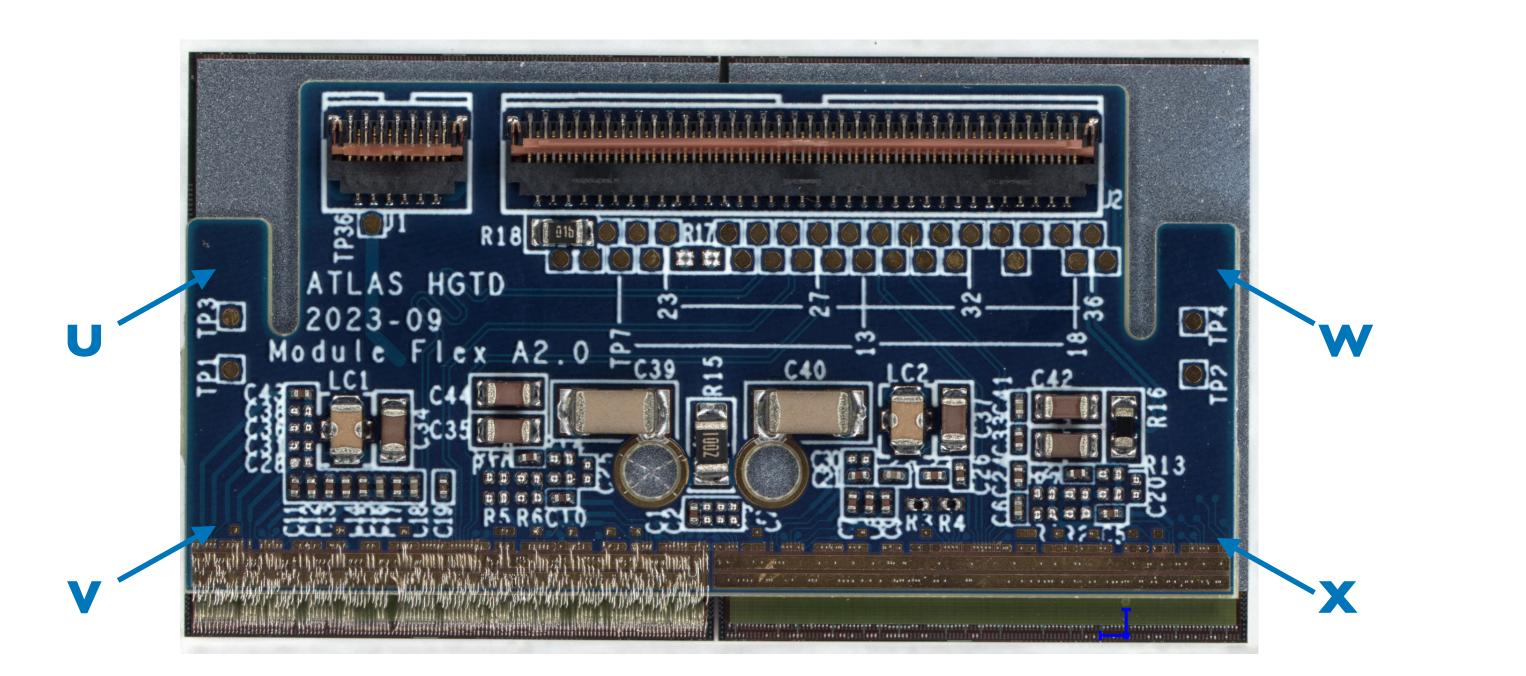
with a calibrated thickness and controlled with small-step screws

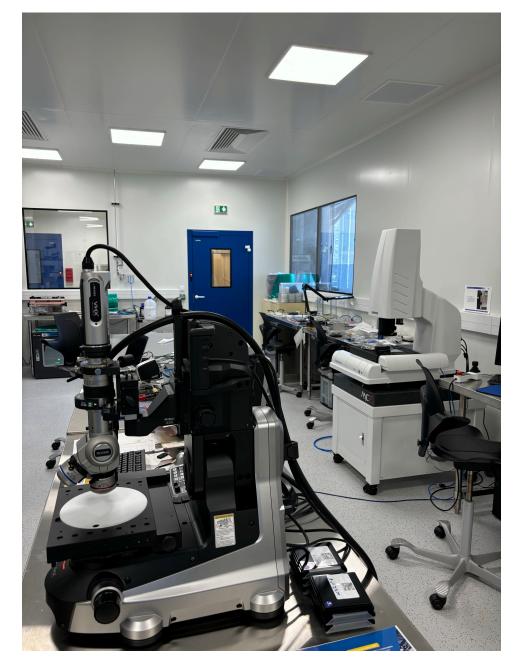
JSec in place a stencil for glue deposition and align dots with module flex surface

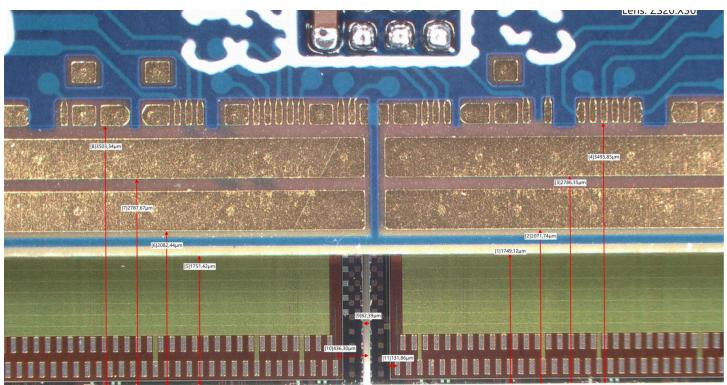
Marko Mihovilovic (IJCLab, UPS)

Glue dots are deposited on flex with the stencil

Close the jig, elements are hold in place. Cure glue for 7-8 hours

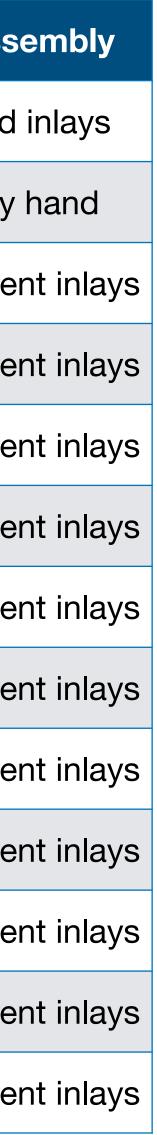



Metrology and wire bonding

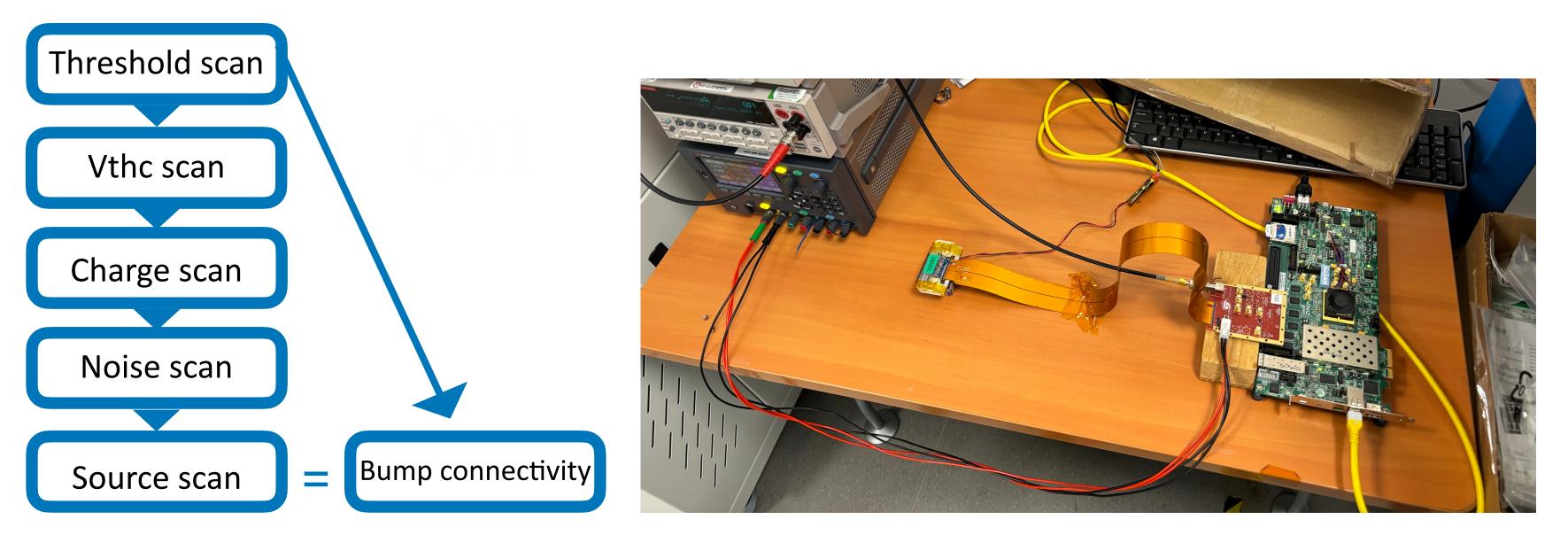

- After gluing process we need to confirm good metrology
 - Distance between two ASICs
 - ASIC-flex distance
 - Thickness/weight
- Once confirmed, modules are sent to Strasbourg to get wire bonded
 - Connecting pads on the ASICs with the pads on the flex
 - Once fully wire-bonded, modules are ready to be tested

Marko Mihovilovic (IJCLab, UPS)

bonded ex ed


Metrology overview - ALTIROC3 full modules

13 ALTIROC3 full modules assembled at IJCLab - <u>8 thick</u> and <u>5 thin</u> modules 0


Old i
By ł
Curren

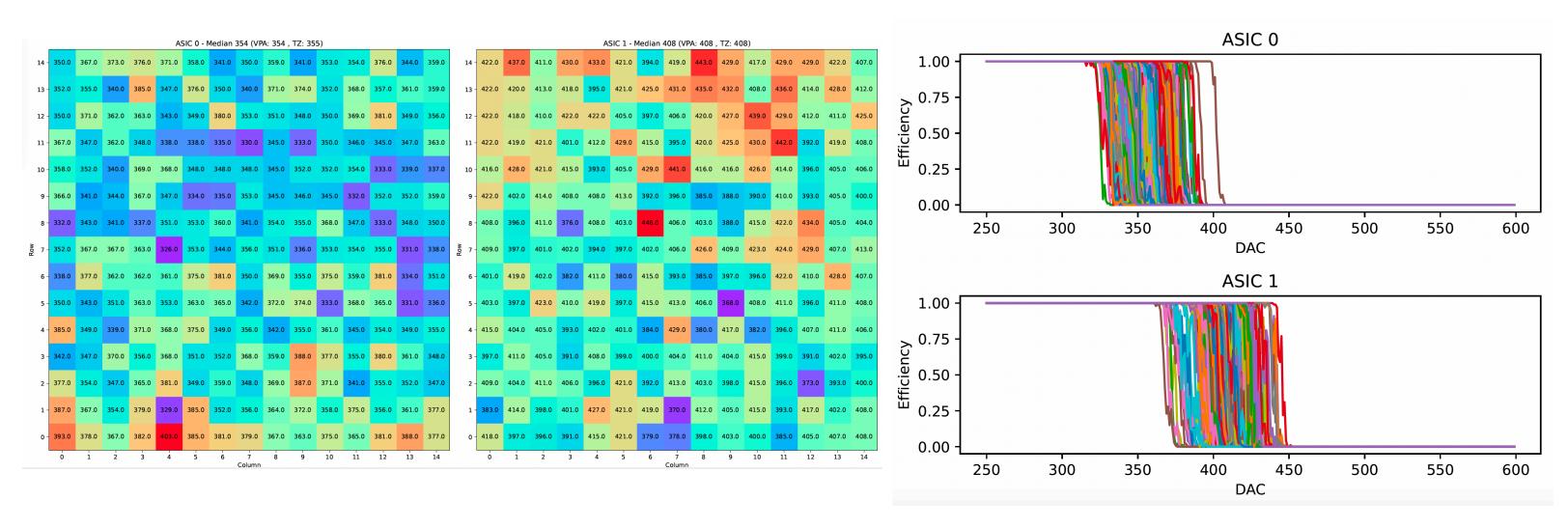
JRJC

Marko Mihovilovic (IJCLab, UPS)

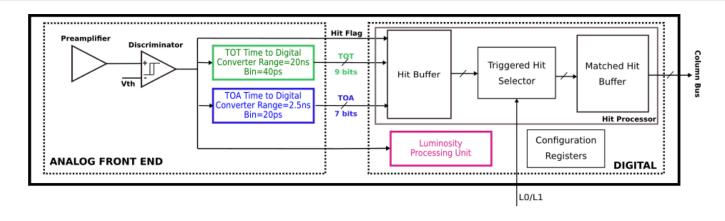
Testing setup and procedure

- Goals of the tests:
 - Verify module connectivity, functionality, performance (timing, efficiency, noise, bumps connectivity)
- The biggest focus for the module assembly side of the project was to test bump connectivity
 - Studying the difference between thick and thin sensors
 - As to study how do thermal cycles affect bump connectivity

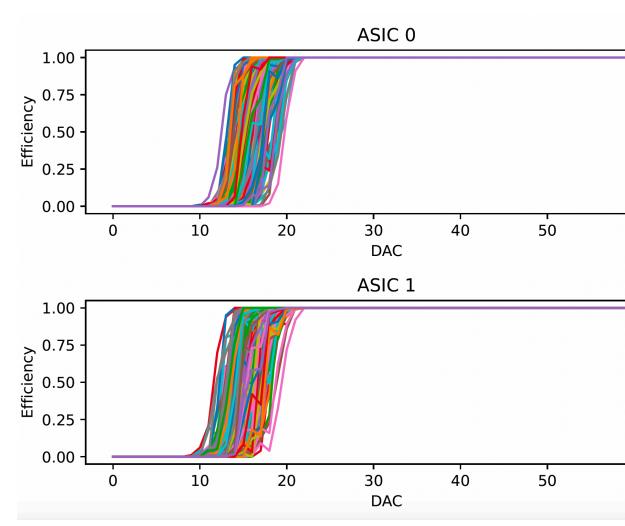
Marko Mihovilovic (IJCLab, UPS)


- FPGA- based system
- Module connected with the flex tail to the interface board that connects to FPGA
- While running tests, module placed on top of the fan to regulate its temperature
- Low voltage and HV power supply

Electrical tests


- Software for the electrical tests of ALTIROC3 modules developed \bigcirc
- Tuning of the modules 0
 - 0 - confirmation of preamplifier working correctly
 - Charge scan measuring the response of module to different amounts of charge \bigcirc - tuning modules to lowest detectable charge

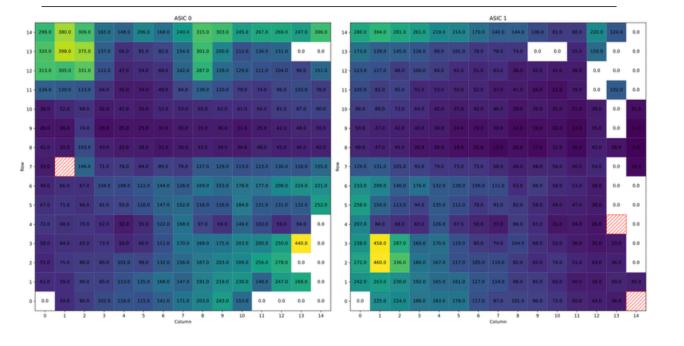
Threshold scan

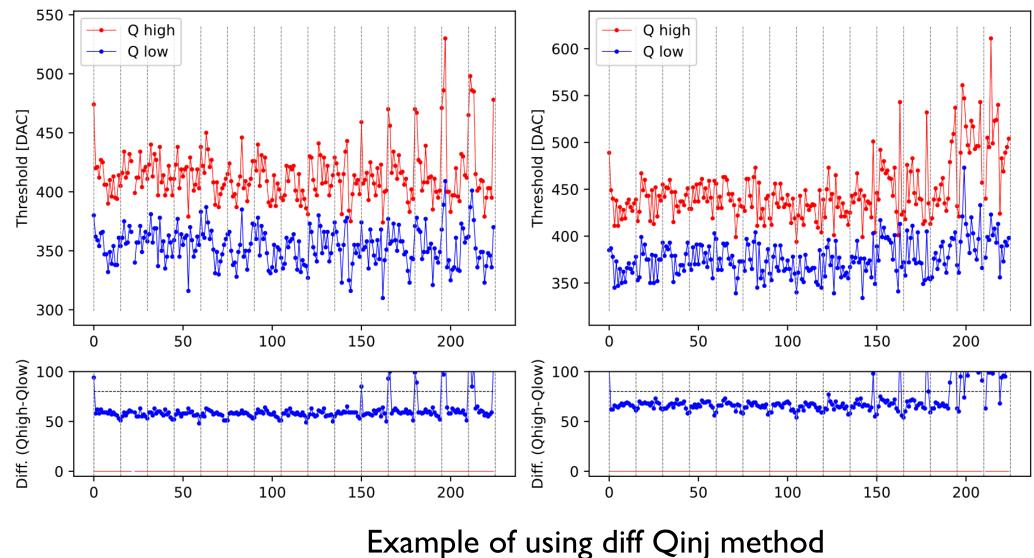

Marko Mihovilovic (IJCLab, UPS)

JRJC

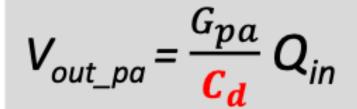
Charge scan

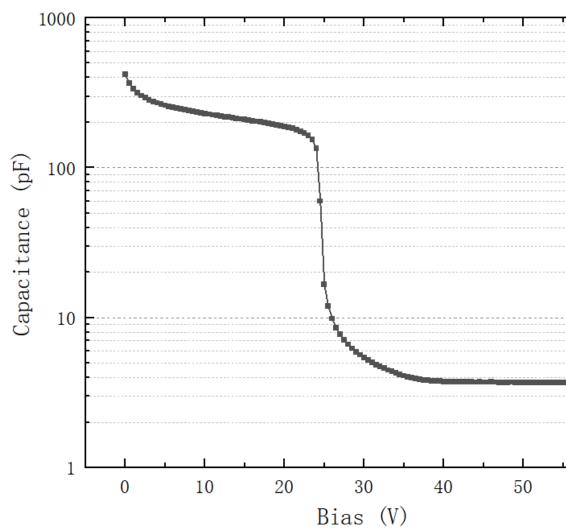
Threshold scans - used to determine the operational threshold where the module starts to register signals above the noise level





Bump connectivity tests


- The most direct method is doing the source scans 0
 - At IJCLab we are using Strontium-90 source 0
- An alternative method (and much faster) is to scan the thresholds for two 0 different charges, and by the differences of these values conclude if the pixel is disconnected or not
 - This can also be done with the same charge but HV On/Off 0
- Another alternative is to check the tot map 0


Example of using source scan method

Marko Mihovilovic (IJCLab, UPS)

G_{pa} ~ 15-20 $C_d \le 1 \text{ pF}$ for disconnected bump C_d ~ 4pF (fully depleted sensor) $C_d > 100 \text{ pF}$ for HV=0

JRJC

			-	-	-	-	-	-	т	-	-	-		-	-	-	-	
_	-	_	-	_	_	_	_	_	l	_		-	-	_	_	_	_	-
	_	_	-	_	_	_	_				_	_	_	_	_	_	_	_
			_	_	_	_	_	_	_			-		_	_	_	_	_
	-	-	-	-	-	-						-	-	-	-	-	-	-
	_													_	_			_
1																		
	_													_	_			_
	-	-	-	-	-						-	-	-	-	-	-	-	-
																		_
1		Ĩ																
-			-			-	_			-	-	-		-	-	-		
		-	-	-			_		_			-			-	-	-	
																	-	
	-	-	-	-	-	-					-	-	-	-	-	-	-	-
	_	_	_	_	_	_	_				_	_	_	_	_	_	_	_
		-	-	-	-	-	-				-	-		-	-	-	-	-
	-	-	-	-	-	-					-	-		-	-	-	-	-
																		_
1		Ĩ																
	-	-	-	-							-	-	-	-	-	-	-	-
_			_	_		_	_	_		_	_	_			_	_		
_				_	_	_	_	_	_	_		-		_	_	_	_	_
				_	_	_	_					_		_	_	_	_	_
				_	_							_			_	_	_	_
	-		-	-	-	-						-		-	-	-	-	
																		_
																	-	
Ĩ	È	Ì	È	Ē	Ē	Ē	Ē	Ē	Ē	Ē							-	
1		1																
	-	-	-	_	-	-					-	-	-	_	_	_	_	-
	-	-	-	-	-						-	-	-	-	-	-	-	
									I									
									•									
								_										
							í	5	1	ſ	١							
							ţ	J		L	,							

Comparison of the methods

Comparison of three different methods to check disconnected bumps \bigcirc Results consistent across all methods 0

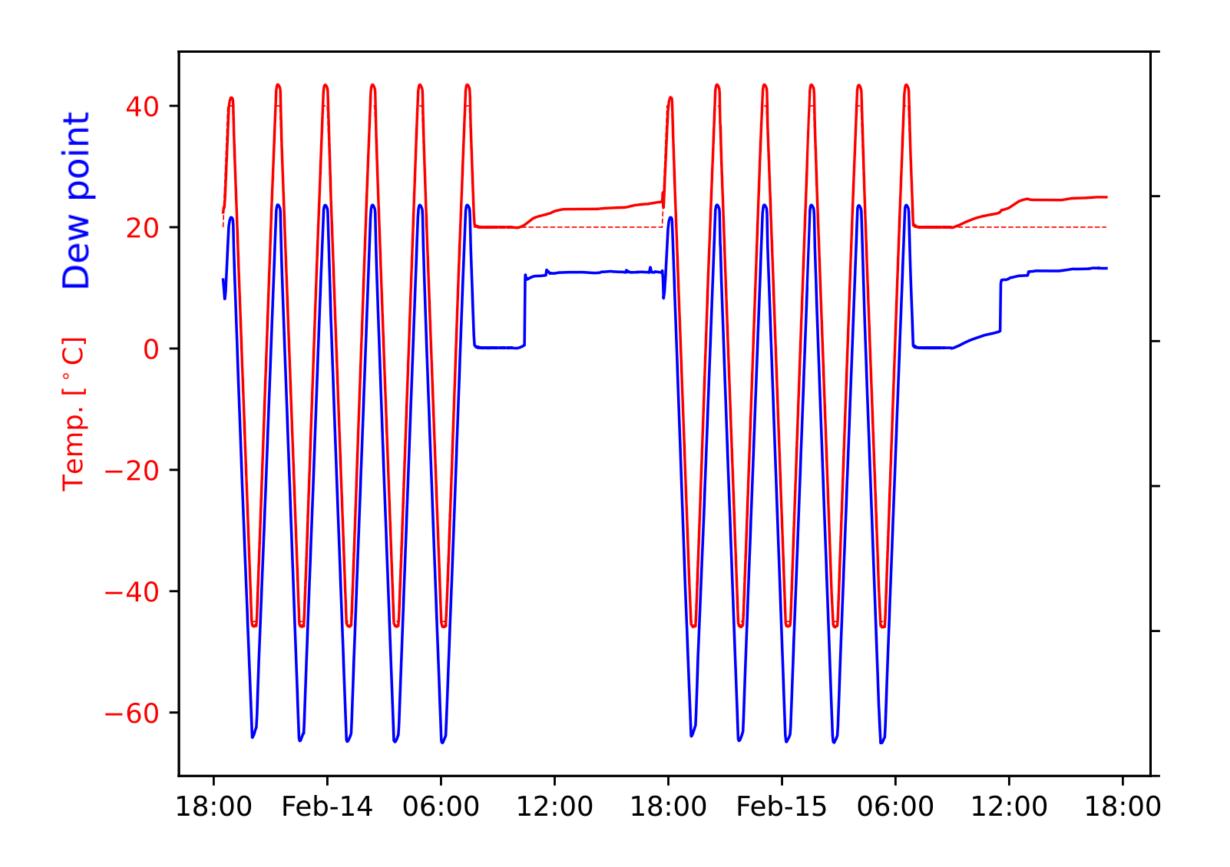
Diff Qinj

	Ó	i	2	3	4	5	6	7 Columr	8	9	10	11	12	13	14
0	- 62.0	38.0	40.0	38.0	43.0	39.0	40.0	46.0	35.0	34.0	40.0	36.0	42.0	39.0	73.0
1	- 39.0	44.0	49.0	41.0	43.0	43.0	42.0	40.0	38.0	43.0	39.0	43.0	35.0	34.0	39.0
2	- 43.0	45.0	43.0	47.0	43.0	45.0	43.0	42.0	41.0	39.0	38.0	39.0	41.0	43.0	34.0
3	- 45.0	45.0	42.0	45.0	48.0	42.0	44.0	44.0	39.0	44.0	41.0	42.0	41.0	36.0	36.0
4	- 42.0	47.0	44.0	43.0	45.0	44.0	45.0	44.0	43.0	40.0	41.0	41.0	35.0	36.0	27.0
5	- 42.0	40.0	47.0	45.0	42.0	43.0	46.0	44.0	41.0	38.0	42.0	37.0	38.0	37.0	39.0
6	- 44.0	46.0	44.0	43.0	45.0	41.0	44.0	40.0	41.0	44.0	45.0	43.0	41.0	37.0	37.0
∧ 7 2	- 46.0	47.0	45.0	41.0	40.0	43.0	42.0	38.0	43.0	39.0	41.0	37.0	45.0	41.0	35.0
8	- 40.0	46.0	43.0	42.0	42.0	44.0	44.0	43.0	41.0	43.0	34.0	40.0	41.0	43.0	40.0
9	- 43.0	48.0	42.0	38.0	41.0	44.0	41.0	41.0	38.0	41.0	44.0	36.0	39.0	38.0	39.0
10	- 45.0	53.0	45.0	41.0	44.0	43.0	40.0	47.0	41.0	40.0	43.0	45.0	43.0	44.0	35.0
11	- 44.0	44.0	46.0	48.0	52.0	43.0	43.0	44.0	41.0	38.0	38.0	44.0	38.0	42.0	37.0
12	- 38.0	44.0	45.0	40.0	42.0	43.0	43.0	43.0	39.0	43.0	43.0	37.0	38.0	38.0	38.0
13	- 40.0	41.0	44.0	47.0	43.0	43.0	43.0	46.0	41.0	39.0	37.0	36.0	39.0	38.0	38.0
14	- 40.0	41.0	44.0	46.0	43.0	40.0	42.0	40.0	38.0	42.0	37.0	35.0	35.0	37.0	35.0

																									1	ASIC 1					
14 -	31	32	31	32	31	31	31	31	31	30	30	30	31	30	29			14 -	72.0	54.0	43.0	58.0	53.0	51.0	53.0	53.0	58.0	27.0	29.0	39.0	75
13 -	30	31	31	30	31	31	31	30	29	29	28	28	29	29	27	- 1	30.0	13 -	34.0	23.0	28.0	28.0	20.0	27.0	34.0	32.0	24.0	17.0	18.0	21.0	99
12 -	31	30	30	30	29	30	29	30	29	29	28	28	28	28	28			12 -	13.0	20.0	24.0	20.0	19.0	13.0	21.0	12.0	14.0	7.0	10.0	15.0	56
11 -	30	31	31	29	30	30	29	29	29	29	28	29	28	28	29	- :	27.5	11 -	8.0	8.0	15.0	4.0	7.0	2.0		7.0		9.0	12.0	11.0	17
10 -	31	30	30	30	30	29	30	30	29	29	29	29	28	28	26			10 -	13.0	11.0		8.0	4.0	9.0	8.0	12.0	11.0	4.0	4.0	4.0	18
9 -	31	30	30	29	29	29	28	29	29	29	28	28	28	28	27	- :	25.0	9 -	14.0	13.0	9.0			9.0	8.0		6.0	8.0	10.0	2.0	18
8 -	29	30	30	30	30	29	29	29	29	28	29	28	28	28	28			8 -	9.0	12.0	16.0	15.0	8.0		8.0		10.0	10.0	26.0	12.0	26
Row 2 -	31	31	29	30	29	29	29	28	29	29	29	28	28	28	28	- :	22.5	Row 2 -	34.0	29.0	36.0	48.0	36.0	41.0	33.0	33.0	30.0	27.0	30.0	16.0	35
6 -	31	30	30	30	30	29	29	29	30	29	29	28	28	28	28			6 -	54.0	57.0	41.0	53.0	55.0	47.0	60.0	46.0	40.0	44.0	29.0	31.0	29
5 -	31	29	30	30	30	30	29	30	29	29	28	29	27	28	28	- :	20.0	5 -	61.0	32.0	34.0	22.0	56.0	29.0	32.0	36.0	41.0	31.0	22.0	21.0	30
4 -	30	31	31	30	30	29	29	29	29	29	29	28	28	29	27			4 -	51.0	47.0	29.0	33.0	43.0	20.0	21.0	26.0	40.0	30.0	18.0	27.0	15
3 -	31	31	30	30	30	30	29	29	29	29	29	28	29	28	28	- 3	17.5	3 -	83.0	148.0	92.0	53.0	51.0	52.0	31.0	45.0	36.0	42.0	22.0	30.0	23
2 -	30	30	31	30	30	30	30	29	29	29	29	29	28	28	27			2 -	79.0	131.0	97.0	72.0	46.0	39.0	46.0	31.0	38.0	42.0	32.0	27.0	23
1 -	30	30	31	30	30	30	29	30	29	29	29	29	29	29	28	- 1	15.0	1 -	74.0	79.0	63.0	64.0	56.0	63.0	60.0	53.0	43.0	48.0	46.0	26.0	23
0 -	17	31	32	31	31	31	30	30	30	30	29	30	29	29	13			0 -	0.0	75.0	67.0	75.0	65.0	57.0	47.0	50.0	49.0	42.0	41.0	39.0	22
	0	1	2	3	4	5	6	7 Columr	8 n	9	10	11	12	13	14				0	i	2	3	4	5	6	7 Column	8	9	10	11	1

Marko Mihovilovic (IJCLab, UPS)

Tot map


Source scan

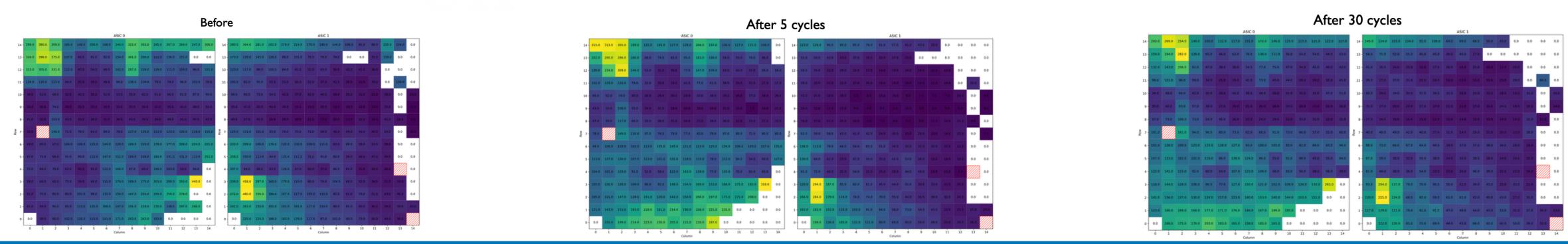
JRJC

12	13	14
2.0	23.0	0.0
3.0	37.0	18.0
3.0	24.0	23.0
3.0	16.0	20.0
.5.0	17.0	13.0
80.0	18.0	19.0
9.0	21.0	16.0
5.0	15.0	15.0
.6.0	8.0	13.0
.8.0	8.0	4.0
.8.0	12.0	4.0
.7.0	21.0	20.0
6.0	37.0	36.0
9.0	76.0	70.0
5.0	96.0	72.0

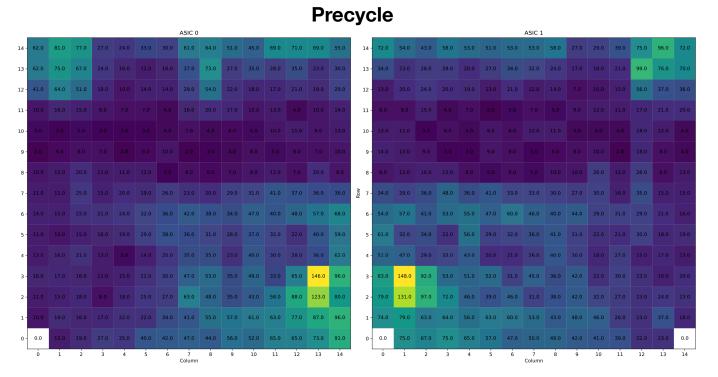
Thermal cycles

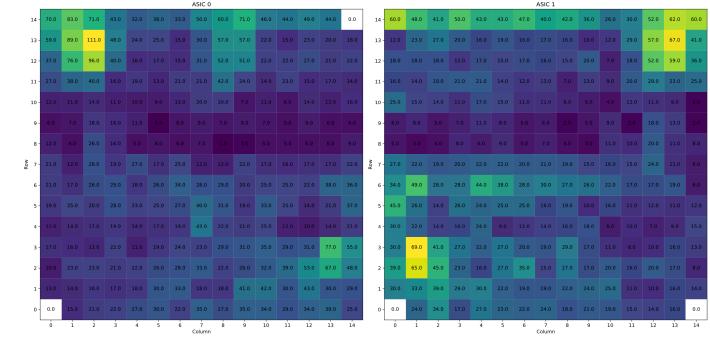
- Because of the differences in the coefficients of thermal expansion between the different materials, modules are tested in extreme operational conditions between -45 °C and 40 °C
- One cycle = 2h30min
- 1h cooling + 15min rest + 1h
 heating + 15 min rest

Marko Mihovilovic (IJCLab, UPS)

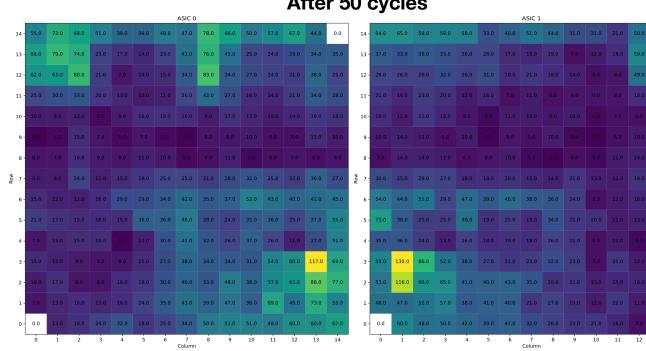


Testing thin hybrids


Initial tests


- Initial design baseline is to use thinned sensors(~300um) C
- Modules with initial disconnections are weak under TC 0
- In most cases, disconnected bumps are on the corners and edges of the modules C

Improved hybridisation


- After improved hybridisation results much better, but still breaking after thermal cycles 0
- Results are much better, but some still broke after a small number of thermal cycles 0

Marko Mihovilovic (IJCLab, UPS)

After 20 cycles

After 50 cycles

JRJC

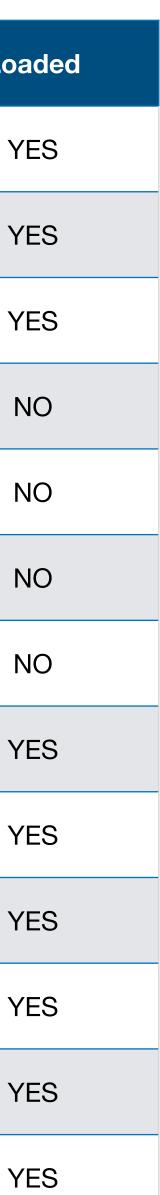
- Decision to move towards thick hybrids (sensors ~800um)
- 8 thick ALTIROC3 full modules assembled at IJCLab
 - 4 of last 5 modules (improved hybridisation) survived 120 thermal cycles with zero disconnected bumps 0
 - One had 2 disconnected pixel after 120 TCs and one had 1 disconnected pixel after 175 TCs 0
- More robust under TCs compared to thin modules
- Because of extra space in the detector, we are able to make this transition

Prec	vcle	After 1	20 cycles
14 - 54.0 52.0 55.0 53.0 57.0 56.0 56.0 55.0 53.0 54.0 58.0 56.0 54.0 56.0 53.0	14 - 46.0 45.0 47.0 44.0 47.0 46.0 52.0 44.0 47.0 46.0 46.0 47.0 48.0 45.0 47.0	14 - 63.0 61.0 62.0 59.0 62.0 59.0 61.0 65.0 61.0 60.0 62.0 62.0 59.0 62.0 60.0	14 - 52.0 54.0 50.0 49.0 52.0 53.0 56.0 54.0 52.0 48.0 52.0
13 - 56.0 57.0 56.0 56.0 58.0 58.0 59.0 59.0 57.0 57.0 60.0 59.0 58.0 58.0 59.0	13 - 51.0 46.0 50.0 48.0 49.0 50.0 51.0 52.0 52.0 50.0 52.0 52.0 52.0 53.0 50.0	13 - 67.0 66.0 63.0 68.0 66.0 61.0 64.0 68.0 65.0 66.0 66.0 65.0 65.0 64.0 61.0	13 - 53.0 54.0 56.0 56.0 53.0 58.0 57.0 54.0 53.0 56.0 58.0
12 - 61.0 63.0 59.0 58.0 59.0 59.0 59.0 60.0 60.0 59.0 61.0 60.0 62.0 63.0 62.0	12 - 53.0 52.0 50.0 51.0 53.0 50.0 50.0 52.0 54.0 53.0 53.0 54.0 51.0 53.0 56.0	12 - 69.0 68.0 67.0 66.0 65.0 66.0 67.0 68.0 66.0 65.0 69.0 66.0 67.0 66.0	12 - 54.0 55.0 57.0 56.0 58.0 59.0 62.0 58.0 54.0 58.0 61.0
11 - 55.0 59.0 59.0 58.0 58.0 59.0 62.0 63.0 62.0 62.0 61.0 60.0 57.0 65.0 63.0	11 - 53.0 49.0 53.0 50.0 52.0 55.0 55.0 54.0 53.0 56.0 54.0 50.0 52.0 53.0 51.0	11 - 66.0 66.0 66.0 68.0 67.0 68.0 71.0 69.0 67.0 72.0 66.0 68.0 66.0 71.0 65.0	11 - 58.0 56.0 59.0 60.0 57.0 60.0 58.0 58.0 58.0 56.0 58.0
10 - 57.0 60.0 59.0 60.0 61.0 61.0 59.0 61.0 62.0 63.0 62.0 62.0 67.0 65.0 59.0	10 - 52.0 53.0 56.0 52.0 53.0 53.0 53.0 58.0 53.0 52.0 55.0 54.0 54.0 50.0 53.0	10 - 65.0 69.0 64.0 69.0 70.0 66.0 67.0 70.0 66.0 70.0 70.0 68.0 68.0 73.0 63.0	10 - 58.0 58.0 60.0 60.0 58.0 60.0 61.0 61.0 59.0 60.0 60.0
9 - 57.0 59.0 58.0 57.0 59.0 62.0 60.0 60.0 59.0 57.0 62.0 67.0 61.0 62.0 61.0	9 - 52.0 52.0 55.0 53.0 53.0 55.0 57.0 53.0 56.0 52.0 55.0 54.0 51.0 51.0 53.0	9 - 68.0 68.0 67.0 68.0 66.0 69.0 68.0 67.0 66.0 67.0 68.0 73.0 63.0 67.0 65.0	9 - 55.0 58.0 61.0 58.0 57.0 60.0 59.0 61.0 59.0 58.0 60.0
8 - 58.0 58.0 59.0 56.0 59.0 60.0 58.0 63.0 60.0 60.0 60.0 63.0 65.0 65.0 62.0	8 - 54.0 56.0 53.0 52.0 51.0 54.0 54.0 51.0 51.0 52.0 48.0 54.0 52.0 53.0 52.0	8 - 61.0 66.0 66.0 64.0 70.0 68.0 67.0 72.0 67.0 70.0 68.0 70.0 68.0 67.0 66.0	8 - 60.0 56.0 59.0 56.0 57.0 60.0 62.0 60.0 61.0 58.0 59.0
፩ 7 - 60.0 60.0 58.0 60.0 61.0 57.0 61.0 60.0 61.0 65.0 63.0 63.0 60.0 66.0 61.0	ଛୁ 7 − 54.0 55.0 51.0 52.0 52.0 53.0 55.0 52.0 56.0 56.0 57.0 53.0 54.0 55.0 54.0	ଛୁ 7 - 68.0 70.0 68.0 69.0 70.0 65.0 70.0 68.0 72.0 71.0 67.0 66.0 67.0 65.0	ర్ట్ల్లో 7 - 61.0 58.0 60.0 59.0 55.0 56.0 59.0 61.0 57.0 60.0 60.0
6 - 63.0 61.0 59.0 60.0 62.0 59.0 60.0 61.0 61.0 62.0 62.0 60.0 62.0 64.0 59.0	6 - 55.0 54.0 53.0 55.0 54.0 51.0 55.0 52.0 56.0 54.0 54.0 55.0 53.0 53.0 52.0	6 - 67.0 66.0 67.0 68.0 68.0 66.0 70.0 69.0 66.0 71.0 73.0 70.0 69.0 70.0 64.0	6 - 55.0 62.0 59.0 60.0 61.0 59.0 58.0 58.0 59.0 59.0 59.0
5 - 60.0 58.0 62.0 60.0 58.0 57.0 59.0 62.0 59.0 61.0 64.0 62.0 62.0 66.0 54.0	5 - 53.0 56.0 55.0 53.0 56.0 53.0 55.0 50.0 53.0 49.0 54.0 52.0 53.0 52.0 56.0	5 - 68.0 65.0 68.0 66.0 70.0 68.0 67.0 71.0 68.0 69.0 70.0 69.0 65.0 67.0 60.0	5 - 60.0 59.0 60.0 61.0 59.0 57.0 61.0 59.0 61.0 57.0 60.0
4 - 58.0 56.0 59.0 57.0 61.0 59.0 57.0 59.0 57.0 59.0 60.0 60.0 59.0 60.0 63.0 59.0	4 - 51.0 54.0 53.0 51.0 54.0 51.0 55.0 52.0 49.0 52.0 52.0 55.0 51.0 57.0 55.0	4 - 69.0 66.0 66.0 66.0 70.0 67.0 66.0 68.0 65.0 67.0 67.0 67.0 62.0 67.0 65.0	4 - 59.0 59.0 60.0 57.0 60.0 60.0 65.0 60.0 57.0 59.0 58.0
3 - 58.0 57.0 57.0 56.0 61.0 61.0 61.0 59.0 60.0 61.0 58.0 60.0 62.0 61.0 59.0	3 - 50.0 53.0 52.0 52.0 55.0 53.0 55.0 54.0 51.0 52.0 55.0 53.0 52.0 52.0 52.0	3 - 63.0 65.0 65.0 64.0 68.0 66.0 67.0 66.0 69.0 69.0 68.0 65.0 64.0 66.0 64.0	3 - 52.0 56.0 58.0 57.0 56.0 56.0 60.0 59.0 60.0 58.0 65.0
2 - 58.0 57.0 59.0 56.0 56.0 59.0 56.0 60.0 60.0 61.0 58.0 58.0 57.0 62.0 61.0	2 - 52.0 52.0 53.0 52.0 51.0 52.0 57.0 50.0 52.0 52.0 54.0 54.0 56.0 53.0 53.0	2 - 68.0 65.0 66.0 66.0 66.0 64.0 66.0 67.0 68.0 64.0 65.0 62.0 66.0 60.0	2 - 57.0 57.0 58.0 57.0 57.0 61.0 59.0 59.0 61.0 59.0 62.0
1 - 58.0 57.0 56.0 55.0 56.0 57.0 57.0 56.0 57.0 55.0 55.0 59.0 57.0 57.0 57.0	1 - 42.0 51.0 51.0 52.0 54.0 50.0 51.0 54.0 50.0 49.0 52.0 55.0 51.0 51.0 51.0	1 - 63.0 62.0 62.0 61.0 64.0 65.0 64.0 65.0 66.0 62.0 65.0 65.0 62.0 62.0 61.0	1 - 48.0 54.0 57.0 60.0 58.0 58.0 60.0 59.0 57.0 57.0 59.0
0 - <mark>100.0</mark> 52.0 50.0 52.0 53.0 51.0 51.0 49.0 50.0 53.0 51.0 53.0 53.0 54.0 55.0	0 - <mark>85.0</mark> 46.0 45.0 45.0 46.0 46.0 47.0 52.0 46.0 45.0 48.0 48.0 46.0 48.0 51.0	0 - <mark>113.0</mark> 57.0 61.0 60.0 62.0 58.0 58.0 57.0 58.0 58.0 60.0 60.0 55.0 56.0 59.0	0 <mark>- 93.0</mark> 49.0 50.0 51.0 53.0 53.0 57.0 55.0 52.0 51.0 50.0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column	0 1 2 3 4 5 6 7 8 9 10 Column

JRJC

Marko Mihovilovic (IJCLab, UPS)

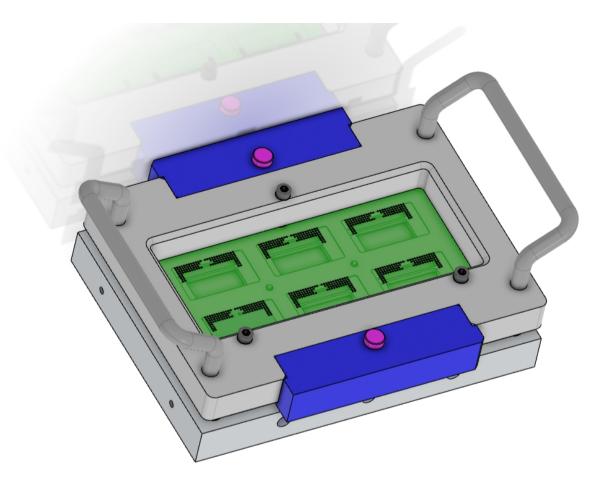
Testing thick hybrids


10	11	12	13	14
50.0	53.0	53.0	55.0	56.0
59.0	59.0	59.0	55.0	56.0
62.0	58.0	58.0	60.0	61.0
65.0	58.0	58.0	56.0	62.0
58.0	60.0	56.0	62.0	59.0
60.0	57.0	60.0	55.0	57.0
59.0	60.0	57.0	58.0	56.0
60.0	56.0	58.0	58.0	59.0
59.0	60.0	61.0	57.0	56.0
60.0	58.0	60.0	57.0	57.0
60.0	61.0	62.0	52.0	60.0
58.0	58.0	59.0	55.0	56.0
61.0	58.0	54.0	56.0	61.0
58.0	57.0	56.0	53.0	54.0

SN	ASIC version	Sensor 1	Sensor 2	UBM/flip chip	Sensor thickness	Functionality	Bump status before TC	Bump status after TC	Loa
20WMO321000001	ALTIROC3	W15(#13)	W15(#20)	NCAP/IFAE	Thick(800um)	Only one chip working	2 pixel disconnected	2 pixel disconnected (~50TC)	YE
20WMO321000002	ALTIROC3	W22(#8)	W22(#7)	NCAP/IFAE	Thick(800um)	Both chips working	0 disconnected / 8 noisy pixels	0 disconnected (20TC)	YE
20WMO321000003	ALTIROC3	W15(#12)	W15(#8)	NCAP/IFAE	Thick(800um)	Both chips working (8 masked pixels)	11 disconnected / 8 noisy pixels	24disconnected pixels (20TC)	YE
20WMO321000004	ALTIROC3	W2-16(#48)	W2-16(#49)	PWchip bumps	Thin (300um)	2 wires not connected/ Both chips working (17 masked pixels)	~40 disconnected pixels (30TC)	~50 disconnected pixels (30TC)	N
20WMO321000005	ALTIROC3	W2-16(#50)	W2-16(#51)	PWchip bumps	Thin (300um)	2 wires not connected / both chips working (3 masked pixels)	~30 disconnected pixels (30TC)	~45 disconnected pixels (30TC)	N
20WMO321000006	ALTIROC3	W15(#2)	W15(#6)	NCAP/IFAE	Thick(800um)	Only one chip working	0 disconnected / 1 noisy pixels	1 disconnected (175 TC)	N
20WMO321000007	ALTIROC3	W15(#7)	W15(#9)	NCAP/IFAE	Thick(800um)	Both chips working	0 disconnected / 6 noisy pixels	0 disconnected (175 TC)	N
20WMO321000008	ALTIROC3	V3 W10(#1)	V3 W10(#6)	NCAP	Thin (300um)	Both chips working	All connected / 1 noisy pixel	All connected (50TC)	YE
20WMO321000009	ALTIROC3	V3 W10(#7)	V3 W10(#8)	NCAP	Thin (300um)	Both chips working	1 pixels disconnected	2 pixels disconnected (50TC)	YE
20WMO321000001 0	ALTIROC3	V3 W10(#9)	V3 W10(#11)	NCAP	Thin (300um)	Both chips working	All connected	All connected (50TC)	YE
20WMO321000001 1	ALTIROC3	V1-A15(#13)	V1-A15(#14)	PWchip bumps	Thick(800um)	Both chips working	All connected	All connected (120TC)	YE
20WMO321000001 2	ALTIROC3	V1-A15(#15)	V1-A15(#16)	PWchip bumps	Thick(800um)	both chips working but col14 for Asic1	1 noisy pixels + col14 not working	3 pixels disconnected (180TC)	YE
20WMO321000001 3	ALTIROC3	V1-A15(#17)	V1-A15(#18)	PWchip bumps	Thick(800um)	Both chips working	All connected	All connected (120TC)	YE

Marko Mihovilovic (IJCLab, UPS)

Thermal cycle overview



Plans for the future

- Preproduction is expected to start end of 2024 \bigcirc
- The last version of ALTIROC => ALTIROC-A
- In the preprod. we will assemble 10% of the total modules using ALTIROC-A 0
- Improving gluing setup for multi-module assembly and testing (jig for 6 \bigcirc modules at the same time)

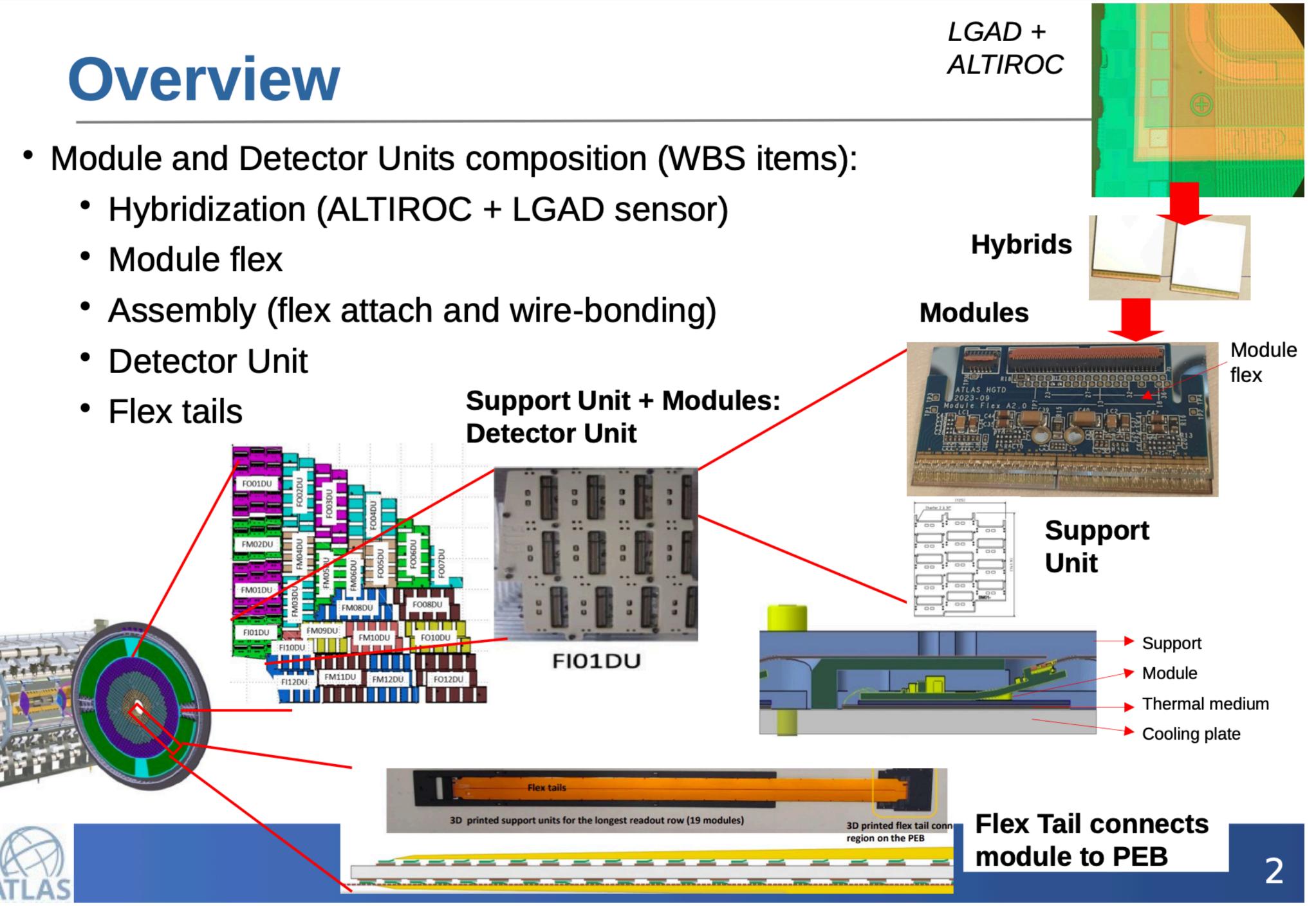
Marko Mihovilovic (IJCLab, UPS)

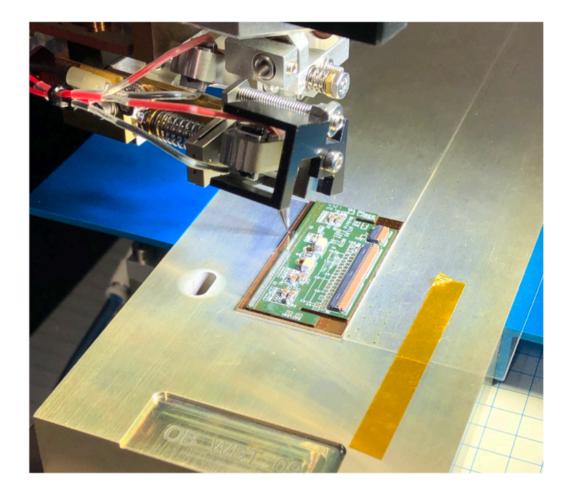
6 module jigs for module assembly

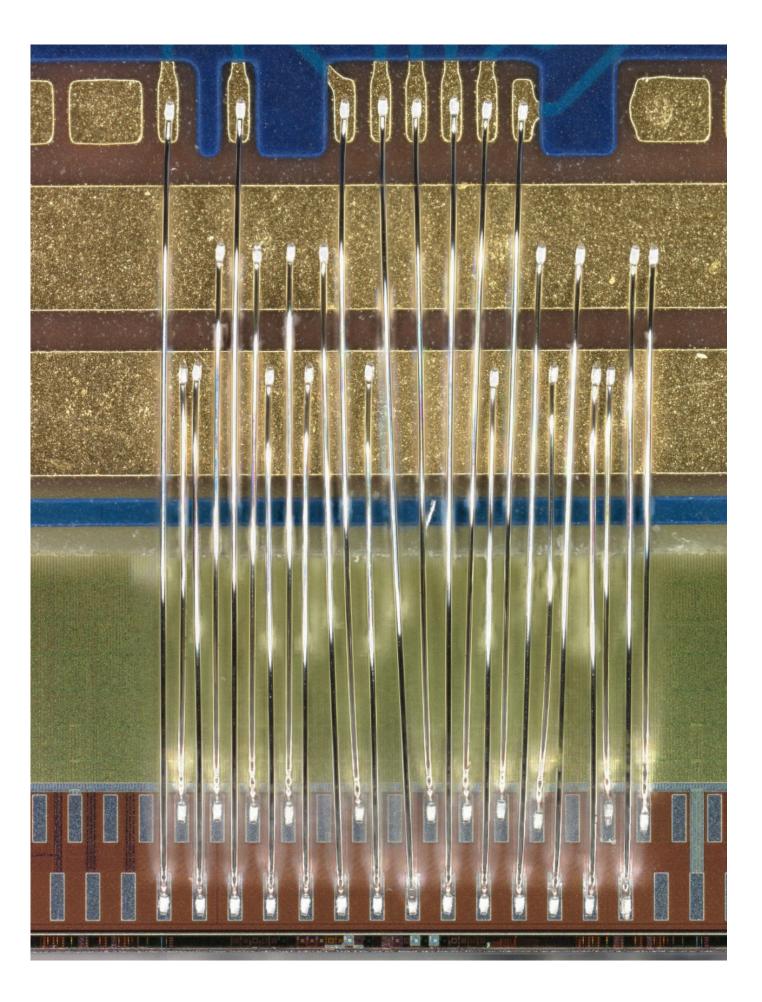
- High Granularity Timing Detector (HGTD) proposed in front of the end-cap calorimeter for pile-up mitigation 0
- Adding timing information in the end-cap region improves pile-up rejection and vertex reconstruction
- It consists of 8032 modules 0
 - ~2000 modules will be assembled at IJCLab (France)
- Thin modules tend to start breaking during thermal cycles \bigcirc
 - Initial modules had a lot of disconnected pixels even before thermal cycles
 - With improved hybridization, results are better, but we still had some disconnected pixels after ~ 20 TCs \bigcirc
- Thick modules are shown to be more robust
 - Decision to move towards thick hybrids \bigcirc
 - Multiple modules surviving more than 100 TCs without broken pixels
- Preproduction starting soon using the last version of ALTIROC (ALTIROC-A) and using the thicker sensors \bigcirc

Marko Mihovilovic (IJCLab, UPS)


Conclusion




Backup slides



- Wire bonding done at C4PI in Strasbourg
- Initial difficulties with wire bonding ALTIROC3 modules because of additional row of pads on \bigcirc the chip
 - Wires sometime have to be moved by hand (to be automatised)
- Overall the performance of wire bonding of ALTIROC3 modules very good and consistent \bigcirc
- Wire bonding of ALTIROC-A soon to be done and verified

Marko Mihovilovic (IJCLab, UPS)

Wire bonding

Comparison of the methods

Precycle

	i	2	3	4	5	6	7 Columr	8	9	10	11	12	13	14				
.0	33.0	36.0	32.0	33.0	33.0	35.0	34.0	31.0	33.0	32.0	29.0	33.0	32.0	32.0			0 -	62
.0	35.0	37.0	35.0	34.0	35.0	37.0	36.0	33.0	33.0	34.0	33.0	34.0	34.0	35.0			1 -	39
.0	40.0	36.0	35.0	35.0	35.0	36.0	34.0	34.0	37.0	36.0	35.0	33.0	31.0	33.0			2 -	43
.0	37.0	38.0	36.0	39.0	36.0	32.0	37.0	35.0	34.0	35.0	36.0	30.0	27.0	31.0			3 -	45
.0	36.0	35.0	37.0	33.0	34.0	36.0	34.0	32.0	40.0	34.0	33.0	31.0	31.0	31.0			4 -	42
.0	35.0	36.0	36.0	36.0	36.0	36.0	33.0	35.0	31.0	33.0	35.0	28.0	35.0	25.0			5 -	42
.0	37.0	38.0	36.0	33.0	32.0	35.0	36.0	36.0	29.0	35.0	36.0	33.0	32.0	24.0			6 -	44
.0	41.0	37.0	29.0	33.0	37.0	33.0	33.0	32.0	36.0	35.0	33.0	33.0	36.0	28.0		Row	7 -	46
.0	36.0	36.0	38.0	39.0	35.0	38.0	36.0	33.0	34.0	35.0	33.0	35.0	32.0	29.0			8 -	4(
.0	35.0	36.0	36.0	33.0	38.0	38.0	33.0	35.0	32.0	34.0	28.0	34.0	27.0	27.0			9 -	43
.0	36.0	34.0	36.0	39.0	34.0	38.0	36.0	37.0	36.0	37.0	27.0	33.0	29.0	28.0		1	LO -	45
.0	36.0	34.0	36.0	36.0	36.0	34.0	37.0	32.0	32.0	30.0	35.0	33.0	27.0	28.0		1	11 -	44
.0	33.0	36.0	34.0	33.0	35.0	35.0	33.0	34.0	33.0	38.0	31.0	32.0	31.0	28.0		1	12 -	38
.0	35.0	32.0	35.0	33.0	34.0	32.0	37.0	34.0	28.0	34.0	35.0	35.0	31.0	28.0		1	L3 -	40
.0	33.0	30.0	28.0	31.0	32.0	34.0	34.0	30.0	31.0	30.0	31.0	26.0	32.0	29.0		1	14 -	40

:	14 -	30	31	31	31	31	30	30	30	31	31	30	29	31	29	28	
:	13 -	29	30	30	31	30	29	30	29	30	28	27	28	28	28	28	- 30
:	12 -	28	28	29	29	29	29	29	29	28	29	28	28	28	28	27	
:	11 -	29	30	29	28	28	29	29	28	28	27	28	28	27	27	27	- 28
:	10 -	29	29	28	29	29	28	28	29	28	28	28	28	27	28	27	
	9 -	29	29	29	28	29	28	28	28	28	27	27	27	26	27	26	- 26
	8 -	29	28	30	28	29	30	27	28	28	28	28	27	28	27	26	
Row	7 -	29	29	29	29	28	28	28	28	27	28	28	27	27	27	27	- 24
	6 -	29	29	28	29	28	28	28	28	28	27	27	28	27	26	28	
	5 -	29	28	29	29	28	28	29	28	27	28	27	27	27	27	26	- 22
	4 -	29	29	28	29	27	28	27	28	27	28	27	27	27	27	25	
	3 -	29	28	28	28	27	29	27	27	27	28	27	27	26	26	27	- 20
	2 -	29	29	28	29	28	28	28	27	27	27	28	28	26	27	26	
	1 -	29	29	29	28	28	28	28	27	27	27	28	26	27	27	25	- 18
	0 -	16	30	30	29	28	28	28	27	27	28	27	27	28	26	26	
		ò	i	2	3	4	5	6	7	8	9	10	11	12	13	14	- 16

1 2 3 4 5 6 7 8 9 10 11 12

14	- 31	32	31	32	31	31	31	31	31	30	30	30	31	30	29	
13	- 30	31	31	30	31	31	31	30	29	29	28	28	29	29	27	- 30.0
12	- 31	30	30	30	29	30	29	30	29	29	28	28	28	28	28	
11	- 30	31	31	29	30	30	29	29	29	29	28	29	28	28	29	- 27.5
10	- 31	30	30	30	30	29	30	30	29	29	29	29	28	28	26	
9	- 31	30	30	29	29	29	28	29	29	29	28	28	28	28	27	- 25.0
8	- 29	30	30	30	30	29	29	29	29	28	29	28	28	28	28	
Mow 7	- 31	31	29	30	29	29	29	28	29	29	29	28	28	28	28	- 22.5
6	- 31	30	30	30	30	29	29	29	30	29	29	28	28	28	28	
5	- 31	29	30	30	30	30	29	30	29	29	28	29	27	28	28	- 20.0
4	- 30	31	31	30	30	29	29	29	29	29	29	28	28	29	27	
3	- 31	31	30	30	30	30	29	29	29	29	29	28	29	28	28	- 17.5
2	- 30	30	31	30	30	30	30	29	29	29	29	29	28	28	27	
1	- 30	30	31	30	30	30	29	30	29	29	29	29	29	29	28	- 15.0
0	- 17	31	32	31	31	31	30	30	30	30	29	30	29	29	13	
	Ó	i	2	3	4	5	6	7	8	9	10	11	12	13	14	

Tot map

								ASIC 0																ASIC 1							
14 -	62.0	81.0	77.0	27.0	24.0	33.0	30.0	61.0	64.0	51.0	45.0	69.0	71.0	69.0	55.0	14	72.0	54.0	43.0	58.0	53.0	51.0	53.0	53.0	58.0	27.0	29.0	39.0	75.0	96.0	72.0
13 -	62.0	75.0	67.0	24.0	16.0		16.0	37.0	73.0	27.0	35.0	28.0	35.0	23.0	30.0	13	34.0	23.0	28.0	28.0	20.0	27.0	34.0	32.0	24.0	17.0	18.0	21.0	99.0	76.0	70.0
12 -	41.0	64.0	51.0	18.0		14.0	14.0	29.0	54.0	22.0	18.0	17.0	21.0	19.0	29.0	12	13.0	20.0	24.0	20.0	19.0		21.0		14.0				56.0	37.0	36.0
11 -		16.0						16.0	20.0	17.0					14.0	11	8.0									9.0			17.0	21.0	20.0
10 -														9.0		10	13.0					9.0							18.0		
9 -																9	14.0												18.0		
8 -			20.0											20.0	9.0	8	9.0										26.0		26.0		13.0
7 -			25.0		20.0	19.0	26.0	23.0	20.0	29.0	31.0	41.0	37.0	36.0	36.0	Now 7	34.0	29.0	36.0	48.0	36.0	41.0	33.0	33.0	30.0	27.0	30.0	16.0	35.0		15.0
6 -	14.0		22.0	21.0	24.0	32.0	36.0	42.0	38.0	34.0	47.0	40.0	48.0	57.0	68.0	6	54.0	57.0	41.0	53.0	55.0	47.0	60.0	46.0	40.0	44.0	29.0	31.0	29.0	21.0	16.0
5 -				16.0	19.0	29.0	38.0	36.0	31.0	28.0	37.0	32.0	22.0	40.0	59.0	5	61.0	32.0	34.0	22.0	56.0	29.0	32.0	36.0	41.0	31.0	22.0	21.0	30.0	18.0	19.0
4 -		16.0	21.0			14.0	25.0	35.0	35.0	23.0	40.0	30.0	28.0	36.0	62.0	4	51.0	47.0	29.0	33.0	43.0	20.0	21.0	26.0	40.0	30.0	18.0	27.0			13.0
3 -	16.0	17.0	16.0			21.0	30.0	47.0	53.0	35.0	49.0	33.0	65.0	146.0	96.0	3	83.0	148.0	92.0	53.0	51.0	52.0	31.0	45.0	36.0	42.0	22.0	30.0	23.0		20.0
2 -			18.0		18.0	25.0	27.0	63.0	48.0	35.0	43.0	58.0	88.0	123.0	80.0	2	79.0	131.0	97.0	72.0	46.0	39.0	46.0	31.0	38.0	42.0	32.0	27.0	23.0	24.0	23.0
1 -		19.0	16.0	17.0	22.0	22.0	34.0	41.0	55.0	57.0	61.0	63.0	77.0	87.0	96.0	1	74.0	79.0	63.0	64.0	56.0	63.0	60.0	53.0	43.0	48.0	46.0	26.0	23.0	37.0	18.0
0 -	0.0		19.0	27.0	25.0	40.0	42.0	47.0	44.0	56.0	52.0	65.0	65.0	73.0	91.0	0	0.0	75.0	67.0	75.0	65.0	57.0	47.0	50.0	49.0	42.0	41.0	39.0	22.0	23.0	0.0
	ò	i	ż	3	4	5	6	7	8	9	10	11	12	13	14		ó	i	ż	3	4	5	6	7	8	9	10	11	12	13	14

Diff Qinj

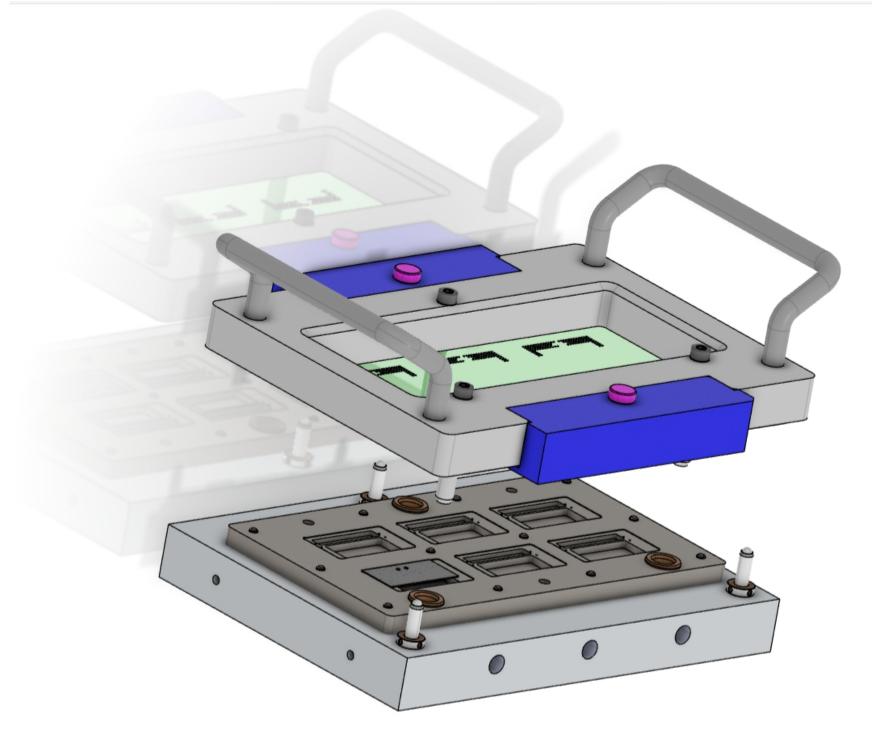
Marko Mihovilovic (IJCLab, UPS)

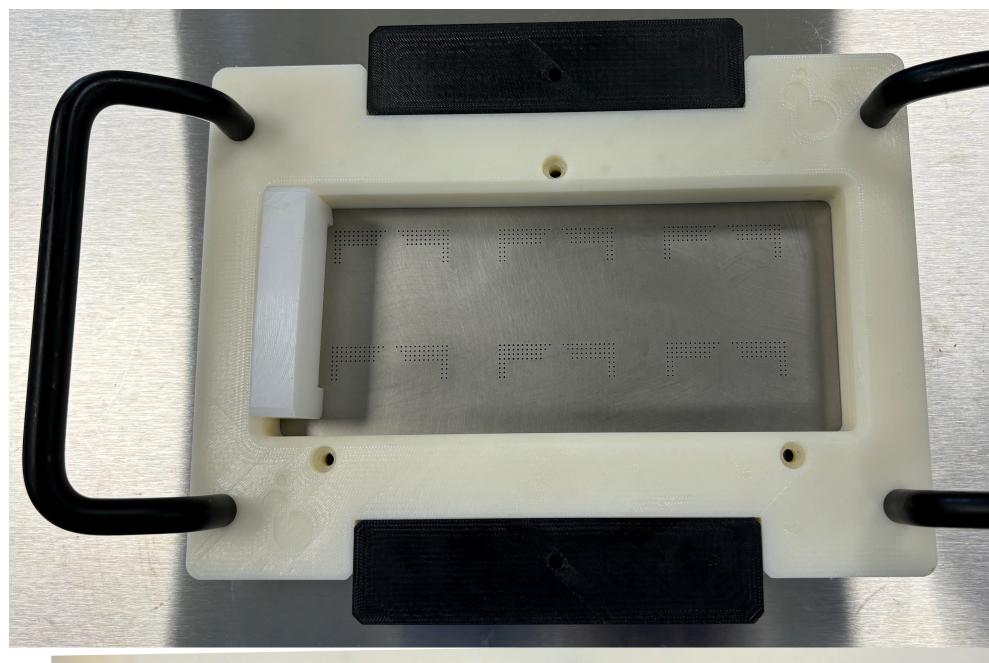
																		_
32.0	57.0		14 -	44.0	45.0	46.0	49.0	42.0	39.0	44.0	41.0	40.0	42.0	40.0	36.0	38.0	39.0	39.0
33.0	26.0		13 -	40.0	47.0	48.0	49.0	44.0	47.0	47.0	48.0	38.0	43.0	45.0	36.0	38.0	43.0	37.0
32.0	26.0		12 -	46.0	48.0	45.0	44.0	43.0	45.0	45.0	44.0	41.0	44.0	46.0	42.0	40.0	41.0	41.0
29.0	27.0		11 -	50.0	47.0	48.0	54.0	48.0	45.0	47.0	46.0	44.0	44.0	45.0	45.0	41.0	43.0	41.0
32.0	27.0		10 -	50.0	57.0	48.0	45.0	46.0	46.0	45.0	47.0	45.0	46.0	46.0	43.0	41.0	37.0	33.0
27.0	29.0		9 -	46.0	47.0	44.0	45.0	43.0	46.0	44.0	44.0	41.0	42.0	43.0	42.0	38.0	40.0	43.0
35.0	29.0		8 -	43.0	52.0	49.0	46.0	41.0	47.0	43.0	44.0	42.0	44.0	39.0	39.0	45.0	44.0	39.0
34.0	37.0	Row	7 -	51.0	47.0	45.0	43.0	44.0	45.0	44.0	42.0	42.0	41.0	45.0	40.0	42.0	46.0	33.0
34.0	27.0		6 -	49.0	47.0	51.0	47.0	44.0	43.0	43.0	44.0	45.0	42.0	45.0	48.0	46.0	42.0	41.0
36.0	25.0		5 -	49.0	44.0	49.0	49.0	45.0	43.0	45.0	47.0	40.0	40.0	40.0	44.0	45.0	40.0	33.0
32.0	32.0		4 -	48.0	53.0	51.0	48.0	48.0	46.0	46.0	39.0	47.0	42.0	46.0	42.0	41.0	40.0	30.0
26.0	31.0		3 -	49.0	48.0	51.0	52.0	54.0	46.0	49.0	45.0	41.0	47.0	41.0	43.0	45.0	38.0	37.0
36.0	34.0		2 -	48.0	47.0	50.0	52.0	46.0	49.0	43.0	47.0	42.0	41.0	42.0	45.0	50.0	46.0	34.0
34.0	34.0		1 -	47.0	48.0	52.0	47.0	44.0	45.0	46.0	43.0	45.0	42.0	42.0	43.0	39.0	36.0	45.0
31.0	30.0		0 -	67.0	42.0	47.0	43.0	47.0	41.0	41.0	42.0	39.0	35.0	39.0	37.0	38.0	40.0	74.0
13	14	I		ò	i	2	3	4	5	6	7 Columr	ี่ 8่ า	9	10	11	12	13	14

	_																
14	4 - 3	30	31	30	30	30	30	30	29	30	31	29	29	31	29	13	- 30.0
13	3 - 2	28	29	29	30	30	28	29	29	29	28	27	28	28	28	28	
12	2 - 2	28	28	29	29	28	29	28	28	27	28	28	28	27	27	26	- 27.5
11	L - 2	28	29	28	28	28	28	28	28	28	26	28	28	27	27	26	- 27.5
10) - 2	28	29	28	28	28	28	28	28	28	28	27	28	26	27	27	
g	9 - 2	28	29	29	27	28	28	28	27	28	27	26	27	26	27	25	- 25.0
8	3 - 2	28	28	29	28	28	29	27	28	27	27	27	27	28	26	25	
Row	7 - 2	29	29	28	28	28	28	27	27	27	28	27	27	27	26	26	- 22.5
e	5 - 2	28	28	28	28	28	28	28	27	28	27	27	27	26	26	27	
5	5 - 2	29	28	28	29	28	28	29	27	27	28	27	26	26	27	25	- 20.0
4	1 - 2	28	29	28	28	27	27	27	28	27	27	26	27	27	27	24	
3	3 - 2	29	28	28	28	27	29	26	26	26	28	27	26	26	26	27	- 17.5
2	2 - 2	29	28	27	28	28	28	27	27	27	26	27	28	26	27	26	
1	1 - 2	28	28	28	27	27	27	27	27	26	26	27	26	27	26	25	- 15.0
(0 - 1	16	29	30	29	28	28	28	27	27	27	27	26	27	26	26	
		ò	i	ź	3	4	5	6	ż	8	9	10	11	12	13	14	

0 1 2 3 4 5 6 7 8 9

_								ASIC 0																ASIC 1							
1 -	70.0	83.0	71.0	43.0	32.0	38.0	33.0	50.0	60.0	71.0	46.0	44.0	49.0	44.0	0.0	14	60.0	48.0	41.0	50.0	43.0	43.0	47.0	40.0	42.0	36.0	26.0	30.0	52.0	62.0	60.0
; -	59.0	89.0	111.0	48.0	24.0	25.0	15.0	30.0	57.0	57.0	22.0	15.0	23.0	20.0	18.0	13	12.0	23.0	27.0	20.0	16.0	19.0	16.0	17.0	16.0	10.0	12.0	29.0	57.0	67.0	41.0
2	37.0	76.0	96.0	40.0	16.0	17.0	15.0	31.0	52.0	51.0	22.0	22.0	27.0	21.0	22.0	12	18.0	18.0	18.0	12.0	17.0	15.0	17.0	16.0	15.0	20.0		18.0	52.0	59.0	36.0
	27.0	38.0	40.0	16.0	19.0		21.0	21.0	42.0	24.0	14.0	23.0	15.0	17.0	14.0	11	16.0	14.0	19.0	21.0	21.0	14.0	12.0	13.0	7.0	13.0	9.0	20.0	29.0	23.0	25.0
			14.0			9.0		20.0	20.0				14.0		16.0	10	25.0	15.0	14.0	11.0	17.0	15.0	11.0	11.0	8.0	6.0		12.0	11.0	9.0	2.0
, -			18.0	16.0				9.0		9.0			9.0			9	6.0	8.0			11.0	8.0		6.0			9.0		18.0	13.0	2.0
			26.0	16.0											9.0	8	5.0			8.0	6.0	9.0					11.0		20.0	11.0	8.0
	21.0		28.0	19.0	27.0	17.0	25.0			22.0	17.0	16.0	17.0	17.0	22.0	Kow 7	27.0	22.0	19.0	20.0	22.0	22.0	20.0	21.0	19.0	15.0	16.0	15.0	24.0	11.0	6.0
; -	21.0	17.0	26.0	29.0	18.0	26.0	34.0	28.0	29.0	20.0	25.0	25.0	22.0	38.0	36.0	6	34.0	49.0	28.0	28.0	44.0	38.0	28.0	30.0	27.0	26.0	22.0	17.0	17.0	19.0	6.0
; -	19.0	25.0	20.0	28.0	23.0	25.0	27.0	40.0	31.0	19.0	33.0	25.0	14.0	21.0	37.0	5	45.0	26.0	14.0	26.0	24.0	25.0	25.0	16.0	19.0	10.0	16.0	11.0	12.0	11.0	12.0
		14.0	17.0	19.0	14.0	17.0	19.0	43.0	22.0	21.0	25.0			14.0	21.0	4	30.0	22.0	14.0	16.0	24.0	9.0	12.0	14.0	16.0	18.0	6.0		7.0	9.0	15.0
: -	17.0	16.0		22.0		19.0	24.0	23.0	29.0	31.0	35.0	29.0	31.0	77.0	55.0	3	30.0	69.0	41.0	27.0	22.0	27.0	20.0	19.0	29.0	17.0	11.0	8.0	10.0	16.0	13.0
		23.0	23.0	21.0	22.0	26.0	28.0	33.0	22.0	26.0	32.0	39.0	53.0	67.0	48.0	2	39.0	65.0	45.0	23.0	16.0	27.0	35.0	15.0	27.0	17.0	20.0	16.0	20.0	17.0	8.0
		14.0	18.0	17.0	18.0	30.0	33.0	18.0	18.0	41.0	42.0	30.0	43.0	30.0	29.0	1	30.0	33.0	39.0	29.0	30.0	22.0	19.0	19.0	22.0	24.0	25.0	11.0	10.0	16.0	14.0
	0.0	15.0	21.0	22.0	27.0	30.0	22.0	35.0	27.0	35.0	34.0	29.0	34.0	38.0	25.0	0	0.0	24.0	34.0	17.0	27.0	23.0	22.0	24.0	18.0	21.0	19.0	15.0	14.0	16.0	0.0
L	ò	i	2	3	4	5	6	7	8	9	10	11	12	13	14	I		i	2	3	4	5	6	7	8	9	10	11	12	13	14

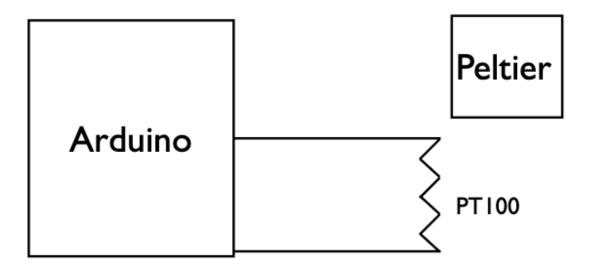

JRJC



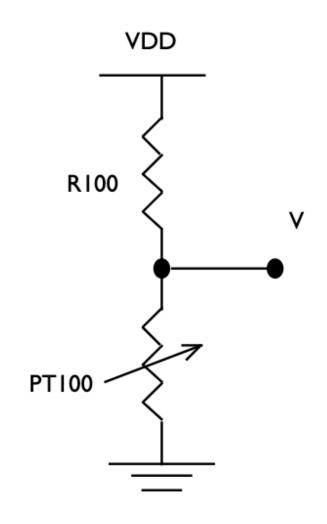
Module assembly - (pre)production

- Plan to move towards 6 module jigs
- Glue will still be deposited over flex using spatula and hole pattern stencils
 - Stencils, the frame for stencils and spatulas manufactured
 - Currently being tested on the inlay-like plate that holds glass with vacuum

Marko Mihovilovic (IJCLab, UPS)

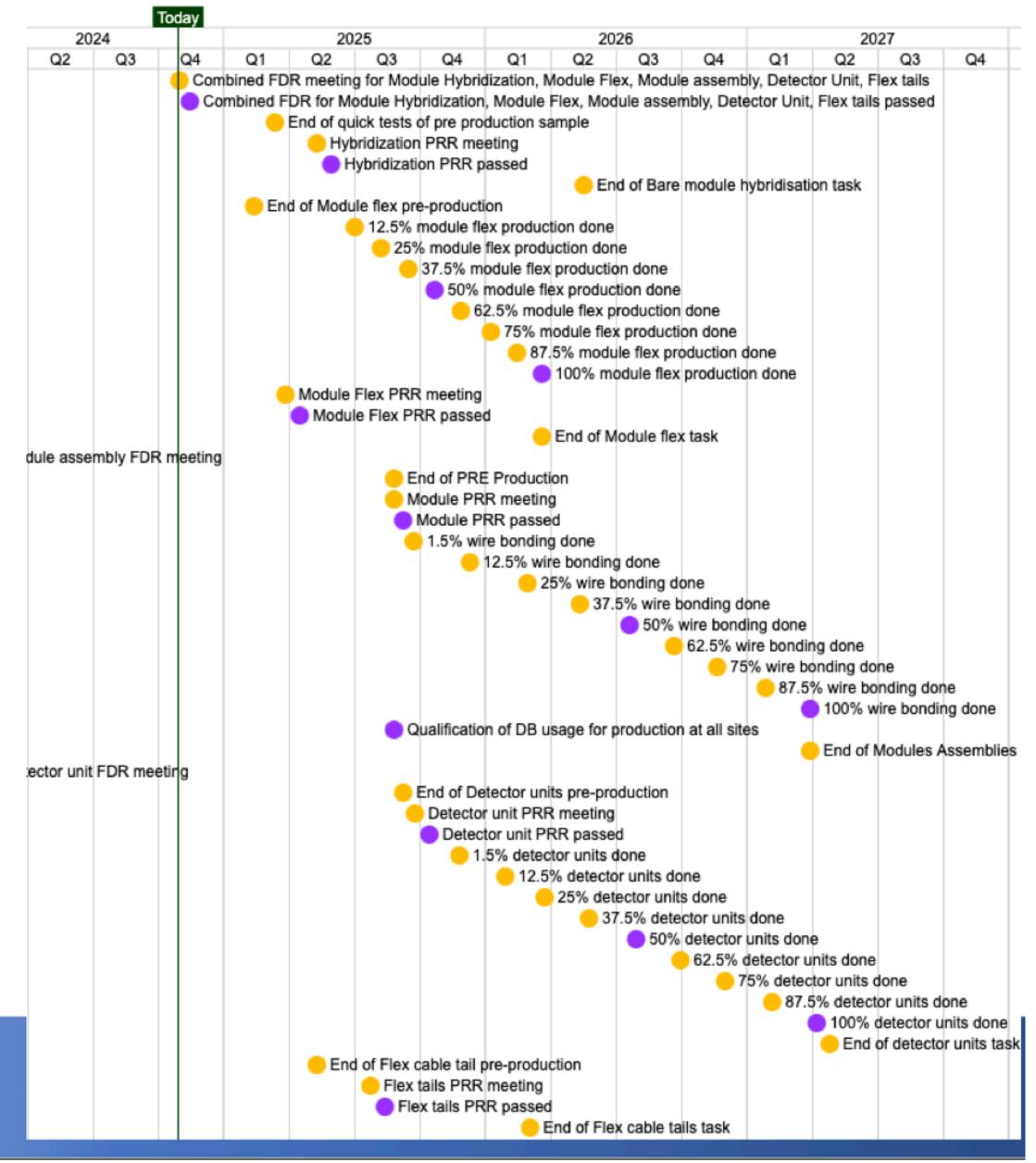


Defining the setup for future module testing


Moderating the temperature of the module using Peltier module underneath

The idea is to have the Peltier element, with a temperature sensor on its surface (Pt100 or Pt1000), and a simple and programmable control system such as an Arduino to do temperature control, by implementing a PID control algorithm and adjusting the current in the Peltier with PWM signal.

Targeted precision of 1°C



Overall production schedule

- HGTD A (0-50%):
 - Hybrids:
 - 1st batch (0-12.5%), Aug 2025
 - 50% done by Dec, 2025
 - Module flex: by Oct 2025
 - Detector units : by July 2026
 - Flex tails: by Dec 2025
 - HGTD A ready for install: by Dec 2026
- HGTD C (50-100%):
 - Hybrids: by May 2026
 - Module flex: by March 2026
 - Detector units : by April 2027
 - HGTD C ready for install : by June 2027

• Critical path: Hybrids \rightarrow module assembly \rightarrow loading \rightarrow assembly at CERN

