Laboratoire de Physique

Emile LAVAUT

Study of 39Ar Beta Decays in

DUNE's Prototypes

NEUTRINO EXPERIMEN

JRJC 2024

1. Neutrino physics 2. DUNE's Low Energy (LE) goals **3. DUNE's Far Detector (FD)** 4. DUNE's prototypes (PDHD/VD)

III. Results on PDHD

1. PDHD MC 2. PDHD calibration 3. PDHD data 4. PDHD 207Bi

II.Low Energy Calibration

1. Challenge : background 2. External source of calibration : 207Bi **3. DONUT Analysis**

Conclusion

Dive

I. DUNE's context

- Neutrino can be produced from very different sources in a large range of energy
- DUNE \rightarrow **Accelerator**, atmospheric

1. Neutrino Physics

- Neutrino can be produced from very different sources in a large range of energy

1. Neutrino Physics

DUNE → Low Energy physics : Solar, SuperNova (SN) and Diffuse SuperNova Background

the energy spectrum of solar neutrinos. Image reprinted from J. Bahcall, A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005)

Figure from arXiv:1205.6003 [astro-ph.IM] arXiv:2207.09632 [astro-ph.HE]

2. Low Energy Goals

- Long baseline neutrino experiment \rightarrow Oscillation oriented experiment
- For Low Energy Neutrino Physics (LE) the Far Detector is very well suited

3. DUNE's Far Detectors (FD)

DUNE is composed of three parts : Accelerator, Near Detector and Far Detector

- Long baseline neutrino experiment \rightarrow Oscillation oriented experiment
- For Low Energy Neutrino Physics (LE) the Far Detector is very well suited

3. DUNE's Far Detectors (FD)

DUNE is composed of three parts : Accelerator, Near Detector and Far Detector

- For Low Energy Neutrino Physics (LE) the Far Detector is very well suited:
 - Huge volume (20 kt each): good statistic
 - Underground: good cosmic rejection
 - Spatial and angular resolution (SuperNova Pointing)

3. DUNE's Far Detectors (FD)

DUNE is composed of three parts : Accelerator, Near Detector and Far Detector

- - Cryostats 1 & 3 → Vertical Drift design
 - Cryostat 2 → Horizontal Drift design
 - Cryostat $4 \rightarrow$ to be defined

3. DUNE's Far Detectors (FD)

• Far Detector = 4 cryostats with LArTPC based technologies with dimensions 66m x 18m x 19m

800 ktons of rock

IJCLAB is producing the cathodes for VD

3. DUNE's Far Detectors (FD)

Cryostat Structure

Cryostat Insulation

Field Cage

3. DUNE's Far Detectors (FD)

Cryostat Structure

Cryostat Insulation

Field Cage

- 2 Prototypes @CERN on surface in 2 (9m x 9m x 9m) cryostats :
 - **ProtoDune Vertical Drift (PDVD)** → ready for LAr filling
 - **ProtoDune Horizontal Drift (PDHD)** \rightarrow took data (May \rightarrow November 2024)

4. ProtoDUNEs

II. Low Energy calibration

- **Cosmics**:
 - **O(2000)/second** for surface detector \rightarrow **ProtoDUNEs (PDVD/HD)** (0.75 kt detector)
 - O(0.01)/second ie O(4000)/days for underground detector \rightarrow FD (20 kt detector)

If we want to perform Low Energy analysis we need to differentiate signal from cosmics events

1. Challenge : background

II. Low Energy at DUNE

- **Cosmics** (suppressed a lot in FD)**/radiologicals** but important for prototypes (PD) @CERN
- **point-like** signals : (radioactive decays) : lacksquare
 - Internal radioactivity, in LAr mainly ${}^{39}Ar$ (+ ${}^{85}Kr$) ullet
 - FD: $\sim 10^7$ decays/s
 - PD: $\sim 10^5$ decays/s

With its huge statistic ${}^{39}Ar$ is a good source of calibration for LE

1. Challenge : background

- Cosmics
- **point-like** signals : (radioactive decays) : lacksquare
 - Intern radioactivity, in LAr mainly ${}^{39}Ar$ (+ ${}^{85}Kr$)
 - ${}^{42}K$, ${}^{232}Th$, ${}^{222}Rn$ chain, ${}^{238}U$ chain from detector component (anode, cathode, field cage ...)

Example: Background measurement with DEAP-3600 (3.3 tonne LAr dark matter detector at SNOLAB)

If good suppression of cosmics this kind of spectrum can be used for calibration

• A **207Bi** source has been placed in PDHD on APA 2 in bottom left corner

2. External source of Calibration : 207Bi

Dive

• A **207Bi** source has been placed in PDHD on APA 2 in bottom left corner

С 0 U Ν Т S

2. External source of Calibration : 207Bi

- Identify radioactive decays (${}^{39}Ar$) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

Reconstructed position of **hits** in the detector

- Identifie radioactive decays $({}^{39}Ar)$ in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

deposit

It insures a veto against high energy deposits \rightarrow in TPC the electron cloud due to ionisation (and its spreading) is correlated to the initial energy

- Identifie radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

To avoid selecting cosmic induced hits like delta-rays or broken tracks

Dive

Dive

- Identify radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

PDHD data event display

- Identifie radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

Then these points are clustered with the philosophy : 1 cluster = 1 decay

- Monte-Carlo composition :
 - Cosmics
 - 1 GeV electron beam
 - ${}^{39}Ar + {}^{85}Kr + {}^{222}Rn$
- No contamination from detector materials (${}^{42}K \& {}^{232}Th$)

- Monte-Carlo composition :
 - Cosmics
 - 1 GeV electron beam
 - ${}^{39}Ar + {}^{85}Kr + {}^{222}Rn$
- No contamination from detector materials (${}^{42}K \& {}^{232}Th$)

After reconstruction and DONUT veto:

- The spatial distribution of LE clusters is **uniform**

$$R_{ext} = 20 \text{ cm}$$

$$r_{int} = 2 \text{ cm}$$

- Monte-Carlo composition :
 - Cosmics
 - 1 GeV electron beam
 - ${}^{39}Ar + {}^{85}Kr + {}^{222}Rn$
- No contamination from detector materials (${}^{42}K \& {}^{232}Th$)

After reconstruction and DONUT veto:

- The spatial distribution of LE clusters is **uniform**

- Suppression of High Energy (>10 MeV) signals

- Monte-Carlo composition :
 - Cosmics
 - 1 GeV electron beam
 - ${}^{39}Ar + {}^{85}Kr + {}^{222}Rn$
- No contamination from detector materials (${}^{42}K \& {}^{232}Th$)

After reconstruction and DONUT veto:

- The spatial distribution of LE clusters is **uniform**
- Suppression of High Energy (>10 MeV) signals

- Identification of ³⁹Ar peak with signal to noise ratio of about 10

and the **suppression of cosmics**

1. PDHD Monte-Carlo

• $r_{int} = 2 \text{ cm} \rightarrow \text{good compromise between distinction of the }^{39}\text{Ar} \beta \text{-spectrum queue}$

ROUGHT CALIBRATION:

- With the identification of the Ar39 queue value on MC:
 - $Q_{value}(0.565 MeV) = 16.5 ADC$
- With evaluation of electronics response

•
$$Q_{collected}[ADC \times tick] = \frac{E_{deposited}}{g_e[f]}$$

 $\rightarrow f_{elec} = 3.5 \times 10^{-2}$
With $W_{ions} = 23.6 \times 10^{-6} MeV^{-1}$, g_e

compete and make this calibration complicated without standard candles.

* from « Study of electron recombination in liquid argon with the ICARUS TPC »

2. PDHD calibration

$$\times ticks \rightarrow f_{MC} = 3.4 \times 10^{-2}$$

$$\frac{1}{d}[MeV] \times W_{ions}[\#e^{-}/MeV]$$

$[#e^{-}/ADC \times tick] \times R$

$^{1}, g_{e} = 10^{-3} \text{ and } R \approx 0.67^{*}$

But at this energy scale several effects (purity, recombination, electronics gain, noise level)

- Run with 1 GeV beam and cosmics
- Surface divided in 4 :
 - APA 1 : electronics connection issue
 - APA 2/4 : Bismuth source
 - APA 3 is the one that we can **compare to Monte-Carlo**

$$R_{ext} = 20 \text{ cm}$$

$$r_{int} = 2 \text{ cm}$$

3. PDHD Data

Z [cm]

- field cage beam

• Energy comparison between APA \rightarrow sensitive to the ^{207}Bi

4. PDHD Data Bismuth

- Energy comparison between APA \rightarrow sensitive to the ^{207}Bi

4. PDHD Data Bismuth

NE

• Energy comparison between APA \rightarrow sensitive to the ^{207}Bi

4. PDHD Data Bismuth

- Spatial reconstruction precise at the cm level
- **Observation of 1 MeV** peak with rough calibration factor

Z [cm]

Conclusion

- Implementation of a powerful calibration tool useful for the collaboration
- Identification of 39Ar with one order of magnitude w/r to cosmic in MC
- First analysis at low energy on PDHD data and identification of Bismuth source
 - Monte-Carlo / data shape comparison performed
- Need simulation of 207Bi for better understanding of data
- Purity analysis to be perform on 39Ar spectrum
- Signal (solar neutrino) over background identification analysis to be done

- ν 's can **oscillate** from one state to an other along their paths

$$P(\nu_{e} \rightarrow \nu_{\alpha}) = |\Sigma |_{ei} |_{\alpha i}^{*} e^{-iE_{i}t}|_{i=1,2,3}^{2}$$

atrix (~CKM matrix)

$$\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} c_{hooz+LBL(app)} \\ P(\nu_{e} \rightarrow \nu_{e}) & e^{-iE_{i}t} |_{i=1,2,3}^{2} \end{pmatrix}$$

$$P(\nu_{e} \rightarrow \nu_{\alpha}) = |\Sigma \cup_{ei} \bigcup_{\alpha i}^{*} e^{-iE_{i}t}|_{i=1,2,3}^{2}$$

• where **U** = **PMNS matrix** (~CKM matrix)

$$\int_{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$i_{ij} \equiv \cos \theta_{ij}, \qquad \underset{P(\nu_{\mu} \rightarrow \nu_{\mu})}{\operatorname{atmos} + \operatorname{LBL}(\operatorname{dis})} \qquad \underset{P(\nu_{\mu} \rightarrow \nu_{e})}{\operatorname{Chooz} + \operatorname{LBL}(\operatorname{app})} \qquad \underset{P(\nu_{\mu} \rightarrow \nu_{e})}{\operatorname{solar} + \operatorname{KamLAND}}$$

1. Neutrino Physics

• ν 's can be produced in **3 flavours states** (ν_e , ν_μ , ν_τ) and **3 mass states** (ν_1 , ν_2 , ν_3)

• Ar39 distributed uniformly in the volume

dominate the measurement precision

All systems in prototyping or preparation

SAND

on-axis, stationary KLOE magnet & calorimeter Straw Tubes GRAIN: 1 ton LAr

Near Detector (ND) measurements shall be of sufficient precision to ensure that when extrapolated to predict the FD event spectra, the associated systematic error must not

1. Recombination - Theory

 R is modelling the immediate « reattachment » of ionisation induced electrons with the nearby ions *
 With *ρ* = LAr density *E_f* = Electric field norm
 α, *β* = parameters
 Actual value of *α* = 0.93 ± 0.02 and

$$Q_{recomb}^{\{\#e^{-}\}} = \mathsf{R} \times Q_{true}^{\{\#e^{-}\}} = \mathsf{R} \times \frac{E_{dep}^{\{eV\}}}{W_{ion}^{\{eV\}}}$$

 Two empiric models: Birks(not used here) and Modified box model

$$R(\alpha,\beta) = \frac{ln\left(\frac{dE}{dx} \times \frac{\beta}{\rho E_f} + \alpha\right)}{\frac{dE}{dx} \times \frac{\beta}{\rho E_f}}$$

*arXiv:1306.1712v1 [physics.ins-det] 7 Jun 2013

** Acciarri et al., « A Study of Electron Recombination Using Highly Ionizing Particles in the ArgoNeuT Liquid Argon TPC »

*** DUNE Collaboration et al., « Identification and Reconstruction of Low-Energy Electrons in the ProtoDUNE-SP Detector »

- Actual value of $\alpha = 0.93 \pm 0.02$ and $\beta = 0.2 \pm 0.02$ from Argoneut (proton and deuton at ~10 MeV)**
- Also measured with Michel e⁻ in PDSP ***

