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I. DUNE’s context
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• Neutrino can be produced from very different sources in a large range of energy  

• DUNE  Accelerator, atmospheric→
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I. Context of DUNE 1.  Neutrino Physics

Main physics program 



• Neutrino can be produced from very different sources in a large range of energy  

• DUNE  Low Energy physics : Solar, SuperNova (SN) and Diffuse SuperNova Background→
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I. Context of DUNE 1.  Neutrino Physics

This talk



• Solar neutrino’s : may see hep neutrino for 1st time 

• Supernovae : 

• Supernovae burst 

• Diffuse Supernovae Background (DSNB)
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CC threshold for 
νe + 40Ar → 40K + e−

Figure from arXiv:1205.6003 [astro-ph.IM]the energy spectrum of solar neutrinos.  
Image reprinted from J. Bahcall,  
A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005) 

Supernovae 
spectrum

DSNB spectrum

arXiv:2207.09632 [astro-ph.HE] 

I. Context of DUNE 2. Low Energy Goals

Neutrino physics  

in the 0 to 10 MeV range 



I. Context of DUNE
• DUNE is composed of three parts : Accelerator, Near Detector and Far Detector 

• Long baseline neutrino experiment  Oscillation oriented experiment 

• For Low Energy Neutrino Physics (LE)  the Far Detector is very well suited

→
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I. Context of DUNE
• DUNE is composed of three parts : Accelerator, Near Detector and Far Detector 

• For Low Energy Neutrino Physics (LE)  the Far Detector is very well suited: 

• Huge volume (20 kt each): good statistic  

• Underground: good cosmic rejection 

• Spatial and angular resolution (SuperNova Pointing) 
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FermiLab

SURF 

3.  DUNE’s Far Detectors (FD)

Start ~2031Start ~2029



• Far Detector = 4 cryostats with LArTPC based technologies with dimensions 66m x 18m x 19m 

• Cryostats 1 & 3  Vertical Drift design  

• Cryostat 2  Horizontal Drift design  

• Cryostat 4  to be defined 

→
→
→
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800 ktons of rock

Underground complex

3.  DUNE’s Far Detectors (FD)I. Context of DUNE
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VD HD

IJCLAB is producing the cathodes for VD

E

3.  DUNE’s Far Detectors (FD)I. Context of DUNE

EEE
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VD HD

E

3.  DUNE’s Far Detectors (FD)I. Context of DUNE

EEE



• 2 Prototypes @CERN on surface in 2 (9m x 9m x 9m) cryostats : 

• ProtoDune Vertical Drift (PDVD)  ready for LAr filling 

• ProtoDune Horizontal Drift (PDHD)  took data (May November 2024)

→
→ →
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PDVD

PDHD

4.  ProtoDUNEsI. Context of DUNE
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PDVD PDHD

4.  ProtoDUNEsI. Context of DUNE



II. Low Energy calibration
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• Cosmics :  

• O(2000)/second for surface detector  ProtoDUNEs (PDVD/HD) (0.75 kt detector) 

• O(0.01)/second ie O(4000)/days for underground detector  FD (20 kt detector)

→
→

16

II. Low Energy at DUNE 1.  Challenge : background

If we want to perform Low Energy  
analysis we need to differentiate 

signal from cosmics events 



• Cosmics (suppressed a lot in FD)/radiologicals but important for prototypes (PD) @CERN 

• point-like signals : (radioactive decays) : 

•  Internal radioactivity, in LAr mainly   (+ ) 

• FD : ~  decays/s 

• PD : ~ decays/s

39Ar 85Kr
107

105
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II. Low Energy at DUNE

           spectrum39Ar

With its huge statistic  is a good 
source of calibration for LE 

39Ar

1.  Challenge : background



• Cosmics 

• point-like signals : (radioactive decays) : 

•  Intern radioactivity, in LAr mainly   (+ ) 

• , ,  chain,  chain from detector component (anode, cathode, field cage …)

39Ar 85Kr
42K 232Th 222Rn 238U
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II. Low Energy at DUNE

Example: Background measurement with DEAP-3600 (3.3 tonne LAr dark matter detector at SNOLAB)

E [keV]

Expected radiological 
spectrum

If good suppression of 
cosmics this kind of 

spectrum can be used for 
calibration 

1.  Challenge : background



II. Low Energy at DUNE
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• A 207Bi source has been placed in PDHD on APA 2 in bottom left corner 

2. External source of Calibration : 207Bi



II. Low Energy at DUNE
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2. External source of Calibration : 207Bi

• A 207Bi source has been placed in PDHD on APA 2 in bottom left corner 



• Identify radioactive decays ( ) in PDHD data/simulation 

• I’m looking for localised and isolated signals in PDHD

39Ar
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II. Low Energy at DUNE 3. The DONUT analysis 

x ~time

y

Reconstructed position of hits in the detector
z



• Identifie radioactive decays ( ) in PDHD data/simulation 

• I’m looking for localised and isolated signals in PDHD

39Ar
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II. Low Energy at DUNE

rint

x ~time

y

z

It insures a veto against high energy deposits  
in TPC the electron cloud due to ionisation (and its 
spreading) is correlated to the initial energy 
deposit 

→

3. The DONUT analysis 



• Identifie radioactive decays ( ) in PDHD data/simulation 

• I’m looking for localised and isolated signals in PDHD

39Ar
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II. Low Energy at DUNE

Rextx ~time

y

z

rint

To avoid selecting cosmic induced 
hits like delta-rays or broken tracks

No hits here

3. The DONUT analysis 
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II. Low Energy at DUNE

Rext

rint

Crepe here 

3. The DONUT KRAMPOUZE analysis 

Rext

Crepe here 
rint
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II. Low Energy at DUNE

Rext

rint

Crepe here 

3. The DONUT KRAMPOUZE analysis 

Rext

rint
No Crepe here 



• Identify radioactive decays ( ) in PDHD data/simulation 

• I’m looking for localised and isolated signals in PDHD

39Ar
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II. Low Energy at DUNE

x ~time

y

z

Rext

rint

rint = 0.5 cm

Rext = 10 cm

PDHD data event display

z [cm]

y [cm]

Isolated points

3. The DONUT analysis 



• Identifie radioactive decays ( ) in PDHD data/simulation 

• I’m looking for localised and isolated signals in PDHD

39Ar
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II. Low Energy at DUNE

PDHD data event display

z [cm]

y [cm]

Decays ?

Then these points are clustered with the philosophy :   

1 cluster = 1 decay

3. The DONUT analysis 



III. Results on PDHD
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• Monte-Carlo composition :  

• Cosmics  

• 1 GeV electron beam 

•   +  +  

• No contamination from detector 
materials (  & )

39Ar 85Kr 222Rn

42K 232Th
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1. PDHD Monte-CarloIII. Results on PDHD 



• Monte-Carlo composition :  

• Cosmics  

• 1 GeV electron beam 

•   +  +  

• No contamination from detector 
materials (  & )

39Ar 85Kr 222Rn

42K 232Th
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III. Results on PDHD 1. PDHD Monte-Carlo

APA 1

APA 2

APA 3

APA 4
After reconstruction and DONUT veto:  

- The spatial distribution of LE clusters is uniform

rint = 2 cm

Rext = 20 cm

count/ cm2



• Monte-Carlo composition :  

• Cosmics  

• 1 GeV electron beam 

•   +  +  

• No contamination from detector 
materials (  & )

39Ar 85Kr 222Rn

42K 232Th
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III. Results on PDHD 1. PDHD Monte-Carlo

After reconstruction and DONUT veto:  

- The spatial distribution of LE clusters is uniform 

- Suppression of High Energy (>10 MeV) signals

> 5 MeV



• Monte-Carlo composition :  

• Cosmics  

• 1 GeV electron beam 

•   +  +  

• No contamination from detector 
materials (  & )

39Ar 85Kr 222Rn

42K 232Th
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III. Results on PDHD 1. PDHD Monte-Carlo

After reconstruction and DONUT veto:  

- The spatial distribution of LE clusters is uniform 

- Suppression of High Energy (>10 MeV) signals 

- Identification of  peak with signal to noise 
ratio of about 10

39Ar



•   good compromise between distinction of the   -spectrum queue 
and the suppression of cosmics
rint = 2 cm → 39Ar β
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1. PDHD Monte-CarloIII. Results on PDHD 

Monte-Carlo                

565 KeV



III. Results on PDHD 
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2. PDHD calibration

• ROUGHT CALIBRATION: 

• With the identification of the Ar39 queue value on MC: 

•   

• With evaluation of electronics response : 

•
 

• With ,  and  * 

• But at this energy scale several effects (purity, recombination, electronics gain, noise level) 
compete and make this calibration complicated without standard candles.

Qvalue(0.565 MeV) = 16.5 ADC × ticks → fMC = 3.4 × 10−2

Qcollected[ADC × tick] =
Edeposited[MeV] × Wions[#e−/MeV]

ge[#e−/ADC × tick] × R
→ felec = 3.5 × 10−2

Wions = 23.6 × 10−6 MeV−1 ge = 10−3 R ≈ 0.67

* from « Study of electron recombination in liquid argon with the ICARUS TPC »



III. Results on PDHD 
• Run with 1 GeV beam and cosmics 

• Surface divided in 4 :  

• APA 1 : electronics connection issue 

• APA 2/4 : Bismuth source  

• APA 3 is the one that we can 
compare to Monte-Carlo 
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3. PDHD Data

APA 1

APA 2

APA 3

APA 4

rint = 2 cm

Rext = 20 cm

count/ cm2



III. Results on PDHD 
• Shape agreement with MC 

• See the Ar39 peak rise
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3. PDHD Data

co
un

t/
 c

m
2



III. Results on PDHD 
• Shape agreement with MC 

• See the Ar39 peak rise 

• Indices of sensitivity to Thorium from 
field cage beam 
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3. PDHD Data

co
un

t/
 c

m
2



III. Results on PDHD 
• Energy comparison between APA  sensitive to the → 207Bi
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4. PDHD Data Bismuth 

Ar39

Bi207 ?
Th
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APA 1
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APA 3
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III. Results on PDHD 
• Energy comparison between APA  sensitive to the → 207Bi
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4. PDHD Data Bismuth 

Ar39

Bi207 ?
Th

APA 1 APA 2 APA 3 APA 4
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III. Results on PDHD 
• Energy comparison between APA  sensitive to the → 207Bi
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4. PDHD Data Bismuth 

Bi207 ?



III. Results on PDHD 
• Spatial reconstruction precise at 

the cm level 

• Observation of  1 MeV peak with 
rough calibration factor 

• need simulation to understand 
better the spectrum: 

• Gamma scattering  

• Recombination effect …
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4. PDHD Data Bismuth 

source 

Energy 

Energy without background
APA 2

count/ cm2



Conclusion
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• Implementation of a powerful calibration tool useful for the collaboration  

• Identif

• First analysis at low energy on PDHD data  and identif

• Monte-Carlo / data shape comparison performed 

• Need simulation of 207Bi for better understanding of data 

• Purity analysis to be perform on 39Ar spectrum 

• Signal (solar neutrino) over background identif

Conclusion



• ’s can be produced in 3 flavours states (  ,  , ) and 3 mass states (  ,  , ) 

• ’s can oscillate from one state to an other along their paths 

• where U = PMNS matrix (~CKM matrix)

ν νe νμ ντ ν1 ν2 ν3

ν
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1.  Neutrino Physics

P(νe→να) = |Σ UeiU*
αi e−iEit |2

i= 1, 2, 3

I. Context of DUNE



• Ar39 distributed uniformly in the 
volume

45



• Near Detector (ND) measurements shall be of sufficient precision to ensure that when 
extrapolated to predict the FD event spectra, the associated systematic error must not 
dominate the measurement precision
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