Laboratoire de Physique

Emile LAVAUT

JRJC 2024

Study of 39Ar Beta Decays in

I. Context of DUNE

DUNE

III. Results on PDHD

Conclusion

2. DUNE's Low Energy (LE) goals 1. Neutrino physics 3. DUNE's Far Detector (FD) **II.Low Energy Calibration** 4. DUNE's prototypes (PDHD/VD)

2. External source of calibration : 207Bi 1. Challenge : background 3. DONUT Analysis

1. PDHD MC 2. PDHD calibration 3. PDHD data 4. PDHD 207Bi

I. DUNE's context

- Neutrino can be produced from very **different sources** in a **large range of energy**
- DUNE→ **Accelerator,** atmospheric

- Neutrino can be produced from very **different sources** in a **large range of energy**
-

• DUNE → Low Energy physics : Solar, SuperNova (SN) and Diffuse SuperNova Background

the energy spectrum of solar neutrinos.
Figure from arXiv:1205.6003 [astro-ph.IM] Image reprinted from J. Bahcall, A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005)

I. Context of DUNE 2. Low Energy Goals

-
- -
	-

arXiv:2207.09632 [astro-ph.HE]

I. Context of DUNE

• DUNE is composed of three parts : **Accelerator**, **Near Detector** and **Far Detector**

-
- Long baseline neutrino experiment \rightarrow Oscillation oriented experiment
- For **Low Energy Neutrino Physics (LE)** the **Far Detector** is very well suited

3. DUNE's Far Detectors (FD)

• DUNE is composed of three parts : **Accelerator**, **Near Detector** and **Far Detector**

-
- Long baseline neutrino experiment \rightarrow Oscillation oriented experiment
- For **Low Energy Neutrino Physics (LE)** the **Far Detector** is very well suited

I. Context of DUNE

3. DUNE's Far Detectors (FD)

I. Context of DUNE

• DUNE is composed of three parts : **Accelerator**, **Near Detector** and **Far Detector**

-
- For **Low Energy Neutrino Physics (LE)** the **Far Detector** is very well suited:
	- Huge volume (20 kt each): good statistic
	- Underground: good cosmic rejection
	- Spatial and angular resolution (SuperNova Pointing)

3. DUNE's Far Detectors (FD)

• **Far Detector** = 4 cryostats with **LArTPC based technologies** with dimensions 66m x 18m x 19m

- - Cryostats 1 & 3 **Vertical Drift design** →
	- Cryostat 2 **Horizontal Drift design** →
	- Cryostat $4 \rightarrow$ to be defined

800 ktons of rock

3. DUNE's Far Detectors (FD) **I. Context of DUNE**

Cryostat Structure

IJCLAB is producing the cathodes for VD

3. DUNE's Far Detectors (FD) **I. Context of DUNE**

Cryostat Structure

3. DUNE's Far Detectors (FD) **I. Context of DUNE**

- 2 Prototypes @CERN on surface in 2 (9m x 9m x 9m) cryostats :
	- ProtoDune Vertical Drift (PDVD) \rightarrow ready for LAr filling
	- **ProtoDune Horizontal Drift (PDHD)** \rightarrow took data (May \rightarrow November 2024)

1. Context of DUNE 4. ProtoDUNEs

II. Low Energy calibration

If we want to perform Low Energy analysis we need to differentiate signal from cosmics events

- **Cosmics :**
	- **O(2000)/second** for surface detector → ProtoDUNEs (PDVD/HD) (0.75 kt detector)
	- O(0.01)/second ie O(4000)/days for underground detector → FD (20 kt detector)

With its huge statistic $39Ar$ is a good source of calibration for LE ³⁹*Ar*

II. Low Energy at DUNE

- **Cosmics** (suppressed a lot in FD)**/radiologicals** but important for prototypes (PD) @CERN
- **point-like signals : (radioactive decays) :**
	- Internal radioactivity, in LAr mainly $39Ar$ ($+85Kr$)
		- FD $:-10^7$ decays/s
		- PD : $\sim 10^5$ decays/s

1. Challenge : background

- **Cosmics**
- **point-like signals : (radioactive decays) :**
	- Intern radioactivity, in LAr mainly $39Ar (+85Kr)$
	- ⁴²*K* ²³²*Th* ²²²*Rn* ²³⁸*U*

Example: Background measurement with DEAP-3600 (3.3 tonne LAr dark matter detector at SNOLAB)

If good suppression of cosmics this kind of spectrum can be used for calibration

• ^{42}K , ^{232}Th , ^{222}Rn chain, ^{238}U chain from detector component (anode, cathode, field cage ...)

• A **207Bi** source has been placed in PDHD on APA 2 in bottom left corner

2. External source of Calibration : 207Bi

2. External source of Calibration : 207Bi

• A **207Bi** source has been placed in PDHD on APA 2 in bottom left corner

c Ō Ų N Τ S

- Identify radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

Reconstructed position of **hits** in the detector

- Identifie radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

It insures a **veto against high energy deposits** → In TPC the electron cloud due to ionisation (and its spreading) is correlated to the initial energy

deposit

- Identifie radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

To **avoid selecting cosmic induced hits** like delta-rays or broken tracks

- Identify radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

- Identifie radioactive decays (^{39}Ar) in PDHD data/simulation
- I'm looking for **localised and isolated** signals in PDHD

Then these points are clustered with the philosophy : **1 cluster = 1 decay**

III. Results on PDHD

- Monte-Carlo composition :
	- Cosmics
	- 1 GeV electron beam
	- \cdot $^{39}Ar + ^{85}Kr + ^{222}Rn$
- No contamination from detector materials ($42K$ & $232Th$) ⁴²*K* ²³²*Th*

III. Results on PDHD 1. PDHD Monte-Carlo

- Monte-Carlo composition :
	- Cosmics
	- 1 GeV electron beam
	- \cdot $^{39}Ar + ^{85}Kr + ^{222}Rn$
- No contamination from detector materials ($42K$ & $232Th$) ⁴²*K* ²³²*Th*

After reconstruction and DONUT veto:

- The spatial distribution of LE clusters is **uniform**

$$
r_{int}=2 \text{ cm}
$$

$$
R_{ext} = 20 \text{ cm}
$$

III. Results on PDHD 1. PDHD Monte-Carlo

- Monte-Carlo composition :
	- Cosmics
	- 1 GeV electron beam
	- \cdot $^{39}Ar + ^{85}Kr + ^{222}Rn$
- No contamination from detector materials ($42K$ & $232Th$) ⁴²*K* ²³²*Th*

After reconstruction and DONUT veto:

- The spatial distribution of LE clusters is **uniform**

- **Suppression of High Energy** (>10 MeV) signals

III. Results on PDHD 1. PDHD Monte-Carlo

- Monte-Carlo composition :
	- Cosmics
	- 1 GeV electron beam
	- \cdot $^{39}Ar + ^{85}Kr + ^{222}Rn$
- No contamination from detector materials ($42K$ & $232Th$) ⁴²*K* ²³²*Th*

After reconstruction and DONUT veto:

- **Identification of ³⁹Ar peak** with signal to noise ratio of about 10

- The spatial distribution of LE clusters is **uniform**
- **Suppression of High Energy** (>10 MeV) signals

and the **suppression of cosmics** $r_{int} = 2\,$ cm \rightarrow good compromise between distinction of the $\mathbf{^{39}Ar}$ β

DUNE

• $r_{int} = 2 \, \text{cm} \rightarrow \text{good compromise between distinction of the}$ S-Spectrum queue

III. Results on PDHD

2. PDHD calibration

• ROUGHT CALIBRATION:

- **With the identification of the Ar39** queue value on MC:
	- $Q_{value}(0.565 \; MeV) = 16.5 \; ADC \times ticks \rightarrow f$
- **With evaluation of electronics response :**

• But at this energy scale several effects (**purity, recombination, electronics gain, noise level**)

compete and make this calibration complicated without standard candles.

$$
Q_{collected}[ADC \times tick] = \frac{E_{deposited}[MEV] \times W_{ions}[He \text{ I/M}]}{g_e[He \text{ IADC} \times tick] \times R}
$$

\n
$$
\rightarrow [f_{elec} = 3.5 \times 10^{-2}]
$$

\n
$$
\bullet
$$
 With $W_{ions} = 23.6 \times 10^{-6}$ MeV^{-1} , $g_e = 10^{-3}$ and $R \approx 0.67^*$

$$
\times
$$
 ticks \rightarrow $\boxed{f_{MC} = 3.4 \times 10^{-2}}$

$$
E_{deposited}[MeV] \times W_{ions}[\#e^-/MeV]
$$

$g^=$ *#e*[−]/*ADC* \times *tick*] \times *R*

$= 23.6 \times 10^{-6}$ MeV^{-1} , $g_e = 10^{-3}$ and $R \approx 0.67$

* from « Study of electron recombination in liquid argon with the ICARUS TPC »

III. Results on PDHD

- Run with 1 GeV beam and cosmics
- Surface divided in 4 :
	- APA 1 : electronics connection issue
	- APA 2/4 : Bismuth source
	- **APA 3 is the one that we can compare to Monte-Carlo**

3. PDHD Data

$$
r_{int}=2 \text{ cm}
$$

$$
R_{ext} = 20 \text{ cm}
$$

-
-

-
-
- field cage beam

• Energy comparison between APA \rightarrow sensitive to the ^{207}Bi

4. PDHD Data Bismuth

• Energy comparison between APA \rightarrow sensitive to the ${}^{207}Bi$

4. PDHD Data Bismuth

III. Results on PDHD

• Energy comparison between APA \rightarrow sensitive to the ${}^{207}Bi$

4. PDHD Data Bismuth

III. Results on PDHD

- Spatial reconstruction **precise at the cm level**
- **Observation of 1 MeV** peak with rough calibration factor

Z [cm]

-
-

Conclusion

- Implementation of a powerful calibration tool useful for the collaboration
- Identification of 39Ar with one order of magnitude w/r to cosmic in MC
- First analysis at low energy on **PDHD data** and **identif**
	- **Monte-Carlo / data shape comparison performed**
- Need simulation of 207Bi for better understanding of data
- Purity analysis to be perform on 39Ar spectrum
- Signal (solar neutrino) over background identification analysis to be done

• where **U = PMNS matrix** (~CKM matrix)

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{C}}}
$$

$$
1 & 0
$$

$$
c_{ij} \equiv \cos \theta_{ij}, \quad \frac{\text{atmos+LBL(dis)}}{P(\nu_{\mu} \rightarrow \nu_{\mu})} \quad \frac{\text{Chooz+LBL(ap)}}{P(\nu_{e} \rightarrow \nu_{e}) \& P(\nu_{\mu} \rightarrow \nu_{e})}
$$

1. Neutrino Physics

• ν' s can be produced in **3 flavours states** (ν_e , ν_μ , ν_τ) and **3 mass states** (ν_1 , ν_2 , ν_3)

$$
P(\nu_e \rightarrow \nu_\alpha) = |\Sigma \cup_{ei} \nu_{\alpha i}^* e^{-iE_i t}|
$$

-
- *v*'s can *oscillate* from one state to an other along their paths

• Ar39 distributed uniformly in the volume

• **Near Detector** (ND) measurements shall be of sufficient precision to ensure that when extrapolated **to predict the FD event spectra**, the associated systematic error must not

dominate the measurement precision

All systems in prototyping or preparation

SAND

on-axis, stationary KLOE magnet & calorimeter **Straw Tubes** GRAIN: 1 ton LAr

1. Recombination - Theory

R is modelling the immediate « re- \bullet attachment » of ionisation induced electrons with the nearby ions *

$$
Q_{recomb}^{\{\text{#}e^{-}\}} = R \times Q_{true}^{\{\text{#}e^{-}\}} = R \times \frac{E_d^{\{\text{}}e^{-}\}}{W_i}
$$

Two empiric models: Birks(not used here) and \bullet Modified box model

$$
R(\alpha, \beta) = \frac{\ln\left(\frac{dE}{dx} \times \frac{\beta}{\rho E_f} + \alpha\right)}{\frac{dE}{dx} \times \frac{\beta}{\rho E_f}}
$$

*arXiv:1306.1712v1 [physics.ins-det] 7 Jun 2013

** Acciarri et al., « A Study of Electron Recombination Using Highly Ionizing Particles in the ArgoNeuT Liquid Argon TPC »

*** DUNE Collaboration et al., « Identification and Reconstruction of Low-Energy Electrons in the ProtoDUNE-SP Detector »

 $\begin{array}{c} \{eV\} \ \textit{dep} \end{array}$ $\{eV\}$ ıon

- With $\rho = L$ Ar density $E_f =$ Electric field norm α, β = parameters
- Actual value of $\alpha = 0.93 \pm 0.02$ and $\beta = 0.2 \pm 0.02$ from Argoneut (proton and deuton at \sim 10 MeV)**
- Also measured with Michel e in PDSP ***

