Vertex reconstruction
for
atmospheric neutrino
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A little introduction. ..
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Left: Charged Current (CC)
Right: Neutral Current (NC)
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Neutrino source : atmospheric neutrinos Liquid Argon krampouz!



Project

e Goal: Improve the neutrino reconstruction using machine learning
We focused on *vertex*, because it is the starting point of the reconstruction

With a precise vertex

: BooNFE Vertex: the location
reconstruction, we M —Vf&rtex where neutrino starts
can improve the the interaction,
quality of the whole _ \
reconstruction Neutrne

e Approach ;
1. Assess performance of the current

Pandora vertexing algorithm and find its S el

failure modes PR e
2. ldentify the causes of the failures / N
3. Find and implement solutions to L

address the failures

BNB DATA : RUN 5211 EVENT 1225. FEBRUARY 29, 2016



Pandora DL vertexing algorithm
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Pass 2 ‘zooms-in’ into the vertices found by Pass_1

but are otherwise identical

Each pass made of several steps
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same steps for

found by merging info from all 3 frames

and Pass_1 & Pass_2



Pandora DL vertexing algorithm

In training hits are assigned Network trained to learn Network infers hit distances
a class according to distance those distances from input and resultant heat map
from true vertex images isolates candidate vertex
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Our approach

1. Assess the general performance of the present algo
a. failure rate
b. type of failures

2. Look individually at each step of the algo
3. Decide where/how to start fixing things

Sample used:

e 10k atmospheric w/ 0.1->100GeV. Flux exp(-2.5*E)
e unless specified, CC+NN events are shown
e network training was done on an atm sample (60K events)



General performance: resolution 7

1 e Manyatmospheric neutrino events, at present, have their vertex
f '|- DUNE Preliminary | reconstructed more than 3cm away from the true position

e 7 m  16% of CC events

m 42% of NC events
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Reconstructed vertex error [cm]
Caption: Distribution of the reconstructed Difference in pe rformance:

vertex position error, for neutral current

*Dataset: ~160k atm sample (NC) and charged current (CC) events, as can be explained by the
Il hei Al i d . .
L nature of the interaction

antineutrino flavors are included in the
samples.



Our approach

1. Assess the general performance of the present algo

a. failure rate
b. type of failures

2. Look individually at each step of the algo

3. Decide where/how to start fixing things



Failure mode

A) ‘Normal failure’: vtx reco-ed >3cm away from
truth, but in the right direction 48%
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Our approach
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1. Assess the general performance of the present algo

a. failure rate
b. type of failures

2. Look at each step of the algo

3. Decide where to start fixing things



Algorithm step-by-step
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e Main/first source of failure: the NN algo in

— ~70% of the failures are seen already in Pass 1 NN «
the vertex is put in the wrong position by the network from
the very beginning
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Main point of failure of the algorithm

12

Bad reco: 45%
> 1 class diff

The main point of
failure happens at
the very beginning
of the vertex
algorithm, at the
the NN stage: the
class assigned to
hits is wrong.

Caption: Average over hits, and over
the three views (U, V, W), of the
difference in assigned class considering
the truth vertex position (class™™") and
the predicted class for each hit
(classPed).

It tries to quantify how wrong the raw
output from the network (ie, the distance
class assignments) is from the very
beginning of the vertex reconstruction
algorithm.

1 Nuviews 1 H;
\verage class difference = E A E |classiTth — classf?°d|
Ji=1

lelele j:l
° n =3 is the total number of views (U, V, W)

views

° H is the total number of hits in each of the 3 views

x-axis: No units (average of an average of a

difference in classes that represent fractions of

an image size expressed in pixels)
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Our approach
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1. Assess the general performance of the present algo

a. failure rate
b. type of failures
c. topology of the events in which vtx reco fails

2. Look individually at each step of the algo

3. Decide where how to start fixing things



Solutions to address the failures
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1. Modify current algo: i 1 i
a. increase the trainig sample D‘ D,-“fva D*w

b. replace Pandora’s U-net with a Graph neural network/{GNN) e i e
(to help w/ all failure modes) }ijmu‘ e

S~

2. Add a filter at the end of Step 2, to select failed-vix candidates, e
and combine with an additional algorithm that fix it (to help w/ the

flipped track and SV type of failures) — P Solution 2: at the end

Flowchart of current DL
vertex reconstruction



Modify algo — 1a: Train the network with more events
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Caption: Cumulative histogram of the
error in vertex reconstruction, when
training the U-Net with two different event
sample sizes.



Modify algo — 1b: replace U-Net w/ a Graph Neural Network

Just a little bit intro for GNN.....

Input Graph GNN blocks Transformed Graph Classification layer Prediction
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In order to use a GNN for vertex reco, we must also have a method to transform
hits to graph (call it node-connection method in the slides afterwards)

Still on trial & error stage

Benefit: GNN suppose to understand the structure [\T
of interaction better than CNN + without the “
limitation of pixelized input Examples: Moluecular as a graph




Filter failed events at the end of current algo (option 2) 17

e Create a filter using track energy
information

If we can infer the direction of the track, we
are able to fix failure mode b & ¢ by checking
if a track is flipped or not

We can use the Bragg peak of the muon
track, to determine the direction of the muon
track
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Summary
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1. Assess the general performance of the present algo

a. failure rate
b. type of failures

2. Look individually at each step of the algo

a. main point of failure: NN part

3. Decide where how to start fixing things
a. Training with more samples
b. Graph Nueral network
c. Flipping track filter



