

SESSION OVERVIEW: HADRONIC PHYSICS **BENJAMIN AUDURIER - JRJC - 26/11/24**

HADRONIC PHYSICS

What detector's expert think we do

What nuclear physicists think we do

ANICS CAN fix ANYTHING with duck tape, bailing wire, and WD-40.

What SM physicists think we do

What we think we do

What we really do

Hadrons = particles made of quarks and gluons

QCD running coupling constant

Hadrons = particles made of quarks and gluons

Hadronic physics: we study hadrons

Hadronic physics: we study hadrons

- * Hadronic physics studies the structure, the properties and the interactions of the hadrons in terms of quarks and gluons.
- * The underlying theory is <u>Quantum ChromoDynamics (QCD)</u>.
- * Goal: <u>understanding of QCD</u> to qualitatively describe a wide array of hadronic phenomena.
- A (non exhaustive) list of few key open issues in hadronic physics :
 - How does the **proton mass** arise from its constituents?
 - How does the **proton spin** arise from its constituents?
 - Can we determine precisely the parameters of QCD? (Λ_{QCD} , QCD vacuum parameter, mass of quarks)
 - What is the origin and dynamics of confinement?
 - What are the roles of quarks and gluons in nuclei and **matter under extreme condition**?

Few keV-MeV

Energy per nucleon

GeV to TeV

Energy per nucleon

Few keV-MeV

Nuclear physics

- Few keV to MeV per nucleons.
- Study nuclei as a whole.
- Typical research fields:
 - New stable states.
 - Excited states.

cea

Krampouz resonance.

GeV to TeV

Hadronic physics in the landscape of physics

Energy per nucleon

Few keV-MeV

Nuclear physics

- Few keV to MeV per nucleons.
- Study nuclei as a whole.
- Typical research fields:
 - New stable states.
 - Excited states.

cea

• Krampouz resonance.

Hadronic physics in the landscape of physics

Energy per nucleon

Few keV-MeV

Nuclear physics

- Few keV to MeV per nucleons.
- Study nuclei as a whole.
- Typical research fields:
 - New stable states.
 - Excited states.
- Krampouz resonance. cea

Hadronic structure

Hadronic physics in the landscape of physics

Energy per nucleon

Few keV-MeV

Nuclear physics

- Few keV to MeV per nucleons.
- Study nuclei as a whole.
- Typical research fields:
 - New stable states.
 - Excited states.

cea

Krampouz resonance.

Hadronic structure

Quark-Gluon plasma

« A theory which is not renormalizable (QCD) is garbage anyway »

-My PhD director the first day of my PhD

4-gluon vertex

cea

parton distribution function (PDFs)

Many means for the same goal e+-e- collisions

- No hadrons in initial state
- Production of multi-jets discovery of the gluon, gluon self-coupling

e+e- collider, $\sqrt{s} = 12-47$ GeV 3-jet event, JADE detector at PETRA, DESY (1977)

Many means for the same goal e+-e- collisions e-p/A collisions

- No hadrons in initial state
- Production of multi-jets discovery of the gluon, gluon self-coupling

e+e- collider, $\sqrt{s} = 12-47$ GeV 3-jet event, JADE detector at PETRA, DESY (1977)

cea

- state

 Probe the insides of hadrons using electrons, muons and neutrinos One hadron in the initial

• First convincing evidence of the existence of quarks

Many means for the same goal e+-e- collisions e-p/A collisions

- No hadrons in initial state
- Production of multi-jets discovery of the gluon, gluon self-coupling

e+e- collider, $\sqrt{s} = 12-47$ GeV 3-jet event, JADE detector at PETRA, DESY (1977)

cea

- state

 Probe the insides of hadrons using electrons, muons and neutrinos One hadron in the initial

 First convincing evidence of the existence of quarks

p-p/A collisions

Two hadrons in initial state

hh

• Rich variety of quantum states available for particle production \rightarrow spectroscopy of hadrons, hadron properties.

Deeply Virtual Compton Scattering (DVCS)

- GPD = General Parton Distributions Functions
- Yes, MANY implementation of the parton distribution functions exist.

See next talk !

Factorization theorem

$\Gamma \propto |\text{GPDs} \otimes \sigma(e^- + q \rightarrow e^- + q + \gamma)|$

Deeply Virtual Compton Scattering (DVCS)

- GPD = General Parton Distributions Functions
- Yes, MANY implementation of the parton distribution functions exist.

See next talk !

One cube to rule them all

- Depends on what kinematic variables available experimentally.
- ... and I pass the question of polarization or nuclear PDFs!

... or not: pA collisions !

- * Cold nuclear matter effects (CNM) : relate the fact that a nucleus is not a simple superposition of protons and neutrons.
- * Usually considered CNM effects :

« A constant that varies, we already dealt with that in the past, no big deal. »

-A colleague at a coffee break in a workshop three weeks ago

- Headache to solve numerically.

cea

The best of two worlds

Quantum Chromodynamics

- Non-re-normalizable.
- Headache to solve numerically.

Dynamic colliding nuclear medium

- Initial conditions are different from proton-proton collisions.
- Expending medium in the collision.

The best of two worlds

Quantum Chromodynamics

- Non-re-normalizable.
- Headache to solve numerically.

Dynamic colliding nuclear medium

- Initial conditions are different from proton-proton collisions.
- Expending medium in the collision.

Heavy-ion physics: interface between effective theory, modeling and phenomenology

One medium to rule them all

Quantum Chromodynamics

One medium to rule them all

Quantum Chromodynamics

Phase diagram of hadronic matter

One medium to rule them all

Quantum Chromodynamics

High temperature/density: formation of the Quark-Gluon Plasma

Phase diagram of hadronic matter

* QGP studies at CERN:

* QGP studies at CERN:

Study of nuclear matter under extreme temperature.

14

- * QGP studies at CERN:
 - Study of nuclear matter under extreme temperature.
 - Study the phase transition and confinement.

Visualization by J.E. Bernhard, arXiv:1804.06469

- ***** QGP studies at CERN:
 - Study of nuclear matter under extreme temperature.
 - Study the phase transition and confinement.
 - Study of N-body problems: hydrodynamics.

- * QGP studies at CERN:
 - Study of nuclear matter under extreme temperature.
 - Study the phase transition and confinement.
 - Study of N-body problems: hydrodynamics.
 - Study baby Universe!

- * QGP studies at CERN:

 - Study the phase transition and confinement.
 - Study of N-body problems: hydrodynamics.
 - **Study baby Universe!**

The orthodoxe approach

• The QCD 'vacuum'.

• The confined matter.

• The QGP

The orthodoxe approach

• The QCD 'vacuum'.

• The confined matter.

• The QGP

Hard probes

quarkonia, jets...

Soft probes

Charged particles, light hadrons, low-mass hadrons ...

Electromagnetic probes

• Drell-Yan, photons, weak bosons ...

The probes

• Heavy-quark mesons,

The orthodoxe approach

• The QCD 'vacuum'.

• The confined matter.

• The QGP

Hard probes

quarkonia, jets...

Soft probes

hadrons ...

Electromagnetic probes

• Drell-Yan, photons, weak bosons ...

The probes

• Heavy-quark mesons,

Charged particles, light hadrons, low-mass

The observables

Production

 Cross-sections, Nuclear modification factor, Relative ratios ...

Correlations

• Multiplicity dependance, flow measurements...

The orthodoxe approach

• The QCD 'vacuum'.

• The confined matter.

The QGP

quarkonia, jets...

Soft probes

hadrons ...

Electromagnetic probes

Drell-Yan, photons, weak bosons ...

A QGP physicist should know everything about his/her favorite probs !

The probes

Hard probes

• Heavy-quark mesons,

Charged particles, light hadrons, low-mass

The observables

Production

 Cross-sections, Nuclear modification factor, Relative ratios ...

Correlations

• Multiplicity dependance, flow measurements...

«Oh my god, look at that peak, it's gorgeous !»

-Young enthusiastic me barely arriving in LHCb, looking at any charm hadron peaks.

Why heavy is good

Heavy-quarks (c,b) formation time

- Heavy quarks (charm and bottom) = $M >> \Lambda_{QCD} \rightarrow pQCD$ *
- Large mass = produced at the early stage of the collision *
 - $\tau_{ccbar} \sim 1/2m_c \sim 0.1 \text{ fm} << \tau_{eq} \sim 1 \text{ fm} << \tau_{hadron}$
- * Large mass M >> T_{medium}: thermal modification / abundance negligible
- * Heavy-flavours = ideal probes of the deconfined phase !

Physics case: Λ_c^+ -to-D⁰ ratio

LHCB-PAPER-2021-046

Physics case: Λ_c^+ -to-D⁰ ratio

'What is that strange variable there ?'

Small detour: centrality

* The quantity that relate if a (A-A) collision is head-on or more peripheral is called centrality.

Small detour: centrality

* The quantity that relate if a (A-A) collision is head-on or more peripheral is called centrality.

 $\frac{dN_{ch}}{d\eta} \propto (N_{part} \leftrightarrow$

Experimental Observable

$$\rightarrow N_{coll}) \propto b \rightarrow Centrality$$

 $\uparrow \uparrow \uparrow$
er Model What we want

The wrong by beautiful analogy

Now you can understand it !

HADRONIC PHYSICS

What detector's expert think we do

REDNEC

What nuclear physicists think we do

ANICS CAN fix ANYTHING with duck tape, bailing wire, and WD-40.

What SM physicists think we do

What we think we do

What we really do

