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HADRONIC PHYSICS
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What nuclear physicists think we do What we really do
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Hadronic physics: from quarks to hadrons
Hadronic physics studies the structure, the properties and the interactions of the hadrons in terms of 
quarks and gluons.


The underlying theory is Quantum ChromoDynamics (QCD).


Goal: understanding of QCD to qualitatively describe a wide array of hadronic phenomena.


 A (non exhaustive) list of few key open issues in hadronic physics :


How does the proton mass arise from its constituents?


How does the proton spin arise from its constituents ?


Can we determine precisely the parameters of QCD? (ΛQCD, QCD vacuum parameter, mass of quarks)


What is the origin and dynamics of confinement?


What are the roles of quarks and gluons in nuclei and matter under extreme condition?
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« A theory which is not renormalizable (QCD) is garbage anyway »

-My PhD director the first day of my PhD
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e+-e- collisions

• No hadrons in initial state 

• Production of multi-jets discovery 

of the gluon, gluon self-coupling 
e+e- collider, √s = 12-47 GeV 
3-jet event, JADE detector at PETRA, DESY (1977) 

e-p/A collisions

• Probe the insides of 
hadrons using electrons, 
muons and neutrinos 


• One hadron in the initial 
state 


• First convincing evidence of 
the existence of quarks 

p-p/A collisions

• Two hadrons in initial state 

• Rich variety of quantum states 

available for particle production 
→ spectroscopy of hadrons, 
hadron properties.



Where it gets messy
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Deeply Virtual Compton Scattering (DVCS)

• GPD = General Parton Distributions Functions

• Yes, MANY implementation of the parton 

distribution functions exist.

See next talk !

Γ ∝ ∫ GPDs ⊗ σ(e− + q → e− + q + γ)

Factorization theorem
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Deeply Virtual Compton Scattering (DVCS)

• GPD = General Parton Distributions Functions

• Yes, MANY implementation of the parton 

distribution functions exist.

One cube to rule them all

• Depends on what kinematic variables 
available experimentally.


• … and I pass the question of polarization or 
nuclear PDFs!

See next talk !



… or not: pA collisions !
Cold nuclear matter effects (CNM) : relate the fact 
that a nucleus is not a simple superposition of 
protons and neutrons. 

Usually considered CNM effects :


Modification of the PDF (nPDF).
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« A constant that varies, we already dealt with that in the past, no 
big deal. »

-A colleague at a coffee break in a workshop three weeks ago 



Theory predictions from Lattice QCD

• Brute force QCD solving with computers

• Static predictions, and already takes ages …

The best of two worlds
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Quantum Chromodynamics Dynamic colliding nuclear medium

• Non-re-normalizable.


• Headache to solve numerically.

Plasma

Transition de phase t 
0 ~10 fm/c ~20 fm/c

• Initial conditions are different from proton-proton 
collisions.


• Expending medium in the collision.

Heavy-ion physics:  interface between effective 
theory, modeling and phenomenology
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One medium to rule them all
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Quantum Chromodynamics
Confinement

Asymptotic freedom

Phase diagram of hadronic matter

High temperature/density: formation of the Quark-Gluon Plasma
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14 QGP = perfect build

Nature Physics, volume 15,  pages 1113–1117 (2019)
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«Oh my god, look at that peak, it’s gorgeous !»

-Young enthusiastic me barely arriving in LHCb, looking at any charm hadron peaks.



Why heavy is good

 Heavy quarks (charm and bottom) =  M >> 𝚲QCD  → pQCD


Large mass = produced at the early stage of the collision 

𝛕ccbar ~ 1/2mc ~ 0.1 fm << 𝛕eq ~ 1 fm  << 𝛕hadron


Large mass M >> Tmedium : thermal modification / abundance negligible 

Heavy-flavours = ideal probes of the deconfined phase !
17

Initial fluctuation Mixed phase Freeze-outQuark gluon plasma

Heavy-quarks (c,b) formation time
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LHCB-PAPER-2021-046

‘What is that strange 
variable there ?’
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Small detour: centrality
 The quantity that relate if a (A-A) collision is head-on or more peripheral is called centrality.
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Experimental
Observable Glauber Model What we want



The wrong by beautiful analogy
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HADRONIC PHYSICS

What detector’s expert think we 
do What SM physicists think we do What we think we do

What nuclear physicists think we do What we really do

Now you can understand it !


