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Disclaimers

* This is a twisted view of instrumentation from the eyes of a particle physicist
* I’ve spent my whole career working for LHC experiments

e 25 minutes is not enough to cover everything, apologies if | left out your favourite
detector / technology

* I’'m looking forward to learning from you!
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What is instrumentation?

An instrument can be many things...
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Instrumentation 101

Experiment:A test under controlled conditions that 1s made to demonstrate a
known truth, examine the validity of a hypothesis, or determine the efficacy
of something previously untried.

Instrumentation: a collective term for measuring instruments that are used
for indicating, measuring and recording physical quantities.

Wikipedia
definitions
But it's also a lot of fun!
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Is it a particle zoo?

6 types of quarks
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Or a particle jungle?

* Thanks to the strong interaction: More than 200

mesons + baryons have been found

e + a few exotics (tetraquarks & pentaguarks)

* + the yet un-observed ones!
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And the domesticated particles?
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* Among all the observed particles, only ~13 can travel more than a few mm before decaying:
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* Closest detectors to a p-p collision can reach 2 mm

Particle detectors rely on detecting these particles, measuring their properties and using conservation

laws to reconstruct their “lost" parents
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It’s all about material interaction

We need a “visible” signal from the passage of particles through our detector material

Charged particles: ionisation, I

- + -
Cherenkov, Bremsstrahlung — % u”on Cu
; , , 100 | - 2\ —
continuous energy loss in medium E E o Bethe-Bloch Radiative -
_ e L/ Anderson- i
Photons: photo-electric effect, 2 Py leger :
Compton scattering, pair production % [$= By
. ap 10 et Radiative 7 Radiative =
— instantaneous full energy loss £ F Minimum  effects " losses -
. . §- "Nuclear ionization reach 1% ,_ _____________ -
Hadrons: nuclear interactions Ao Llesses N | ozl o [
1tno
- . . 1 ¢ | | | l|1
Neutrinos: weak interactions NP TR 01 . 00 o0 104 105 106
I | | I | ! | I | | |
1 0.1 1 10 100 | 1 10 100 | 1 10 100 |
photoelectric ;lTCCl [MeV/c| Muon mor[rﬁ;l\tlil C;]ll [TeV/d]
O o Y% —3
ol EY 253
pair production
. @]
Ol E)<Z-E Bethe-Bloch
Compton effect E ~ (mid.-high) MeV ®
O, ol E)x 7/;-10g1:‘ _@ _ Kz2£i l ln 2m602,8272Tma.x B 182 B é
E~ (low-mid.) MeV d.’B A ,82 2 12 2

C. Agapopoulou JRJC 2024 - Instrumentation session 10



Tracking 101

* The trick for charged particles: make them bend!

d_) > —
712 =qf X B ... = plGeV]=0.3B[T]p[m]

e Having the measurement of ff and p — particle
mass & charge

e Measuring the curvature under B-field gives
access to momentum - tracking

e And can lead us back to the interaction vertices

. opr OyPr N .
Momentum resolution: —— ~ R R
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e (Good measurement:

e High B-field, lever arm, number of hits

e Good single-hit resolution, not too high pr
(low bending)
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In the beginning,

Principle of operation

* Particle traverses a gas volume (gas choice
very important!) ionising it

* Created electron/ion pairs drift in electric
field that we apply

e Towards collection anode/cathode —
generated current

Some properties

* Large coverage, good position resolution &
low material budget

e Low yield of created pairs — Require internal
amplification

e Long collection time due to ion tail — can be
handed by filtering electronics

there was

cathode
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And then came Semiconductors!

Solid-state sensors:

e Semiconductors like Silicon, Germanium and Diamond

* Two sides, one negative charge carriers/electrons (n-type) and one with positive carriers/holes (p-type)
e Put them together (p-n junction) — intermediate region without carriers (depletion region)

e Apply some voltage; forward bias - large current / reverse bias — low transient current (our

preference in HEP!)

Principle of operation:

 When a particle passes through, it generates electron - hole pairs
e Again, carriers drift due to the electric field

e Signal generation according to Shockley - Ramo theorem

Some properties:

* High yield of created pairs -> No/little
internal amplification

* O(um) segmentation & short (O(ns-ps) )
signals -> can withstand very high particle
rates

e Radiation hard
* Expensive & difficult to manufacture
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And then came Semiconductors!

First usage of a silicon sensor in HEP at 1983 - NA11/NA32 experiment @ CERN

22
2l
)
W2

Since then: making silicon sensors stronger, faster, better... and smaller
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A few considerations to make a silicon tracker

Strips and pixels

e Strips: 2-D tracking, can be recovered by smart detector design choices (tilting/overlapping
layers)

e Pixels: full 3-D tracking, but large amount of read-out channels, high power consumption

e Usual compromise in HEP: pixels in the innermost layers, strips in the larger outermost area

More about trackers on Thiziri’s talk

Guardring
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Silicon for timing

Using time information in instrumentation is not new: Time of
flight for particle identification has been used for many years!

But, tracking traditionally done in 3-D
However a paradigm shift is coming:

e LHC experiments are planning an increase in luminosity, which
means more busy, complicated events

e Spatial resolution of trackers may no longer be as efficient in
separating interactions and correctly performing the pattern
recognition

e Explore usage of timing information, which is completely
orthogonal : 4-D tracking

What ingredients do we need (for a typical LHC environment)?
e (O(10-100ps) time resolution

* Fast readout & radiation hardness

e Various technologies, more emerging:

e LGADSs: very good time resolution, poor spatial resolution:
separate layers for time and position needed

e AC/TILGADs, Timespot: 4-D sensors (time & spatial info
together), extensive R&D ongoing
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Marko will give us
more details on
timing detectors
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Calorimetry
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Measuring energy

 Up to now, we’ve measured the momentum of only charged particles - what about
neutrals?

* \We can take advantage of electromagnetic and hadronic cascades /showers in thick
“absorber” materials — Calorimeters!

e Destructive measurement — original particle is lost (only muons and neutrinos can survive)

* Measuring the shower size gives the original particle energy

EM showers: Hadronic showers:
¢ Produced by electrons and photons e Produced by hadrons (strong interactions)

e Sequence of pair production & Brem. e Contains EM component
* Shower size described by radiation length Xo il e Shower size described by interaction length 4. .

ABSORBER ; ABSORBER \

E.M.
COMPONENT

VAVAVAVAV/ \/\/<

----------------------------

. HADRONIC
COMPONENT

JV215.¢c
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Calorimeters
CMS homogeneous PbWO4 EM calorimeter

* Homogeneous calorimeters: ' ; ' v

* Active medium (the material that records
the showers) also acts as absorber (the
material that helps develop the shower)

* Excellent energy resolution

* But no longitudinal information on
shower development
ATLAS LAr EM sa ing calorimeter
NI ol o e e o R R AN

——ryC 2 R

mpl

— s SN

e Sampling calorimeters:

e Active medium separate from the

absorber (usually placed in alternating
layers)

e Some energy is always lost in the
absorber — limited energy resolution

e But, information on longitudinal shower
development

More about calorimetry on Christian’s talk
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now, let’s take a little trip
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A word on interferometers
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Some highlights

 Was used in 1887 to disprove luminiferous aether (a proposed medium for light propagation)
e Light source: oil lamp
e Arm length: 1.3 m, path length after reflections 11 m
* Measurement by telescope

e Was used in 2015 from LIGO and VIRGO experiments to prove the existence of gravitational
waves

e Light source: laser

we will hear more about future uses
* Arm length: 4 km , after reflection 1200 km! ut ruture u

in gravitational wave detection in
* Measurement by photodiodes Maxime’s talk

Luminiferous aether

Sun

BAAREEREREERERER
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And what to do with all these signals?
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First of all, record it

e |In the bubble-chamber era:  Today: Integrated electronics (ASICs)

Photographic methods
e Allow us to go down to O(MHz) rates

* Quite precise but... * What we get: electronic signals,

e \ery low rate ~ few HZ — can’t usually digital

. -y
operate ha modern CO”'d.er'. e A wide variety of circuits for position,
* Automation of data analysis is hard energy and time measurement

e Same requirements as the active
material (radiation hard, compact &
not too power consuming)
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Then, process it...

. . . LHCb Run 5
e Technological breakthroughs in material and 107 LHCb Run 4 o
. . . . LHCb Run 3 CMS HL-LHC
electronics have improved signal yields and / \
. . ; . 106 ALICE Run 3 ATLAS HL-LHC
detection times — we’re at the picosecond /
eral @ 10° LHCb Runl/2 ATLAS) CMs
S e \
ICE
e At the same time, demand for precision is \2_, 10° HERARB
increasing = ; KTev 97“711 P erol \
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Total Dis ]
- . 1500+ 2022 Estimates / a
* Software triggering based on = i / =
: B 1250, | ot sesones crese y e
heterogeneous architectures (GPUs, S ,
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= - @)
* Machine-learning developments for = 500
topological event reconstruction, faster 250
simulation and inclusive selections 07021 2023 2025 2027 2029 2031 2033 2035 2037

Year
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In the end
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These images are thanks to the instruments, and you!
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Credits

* |. Wingerter's CERN summer school lectures
 EDIT 2020 Lectures on detectors
e Wikipedia

e And more...
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Backup
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Hello, | love you, will you tell me your name?

We measured p ... And what about [ ?

_ dE
» Measuring the energy loss —

dx

Remember the Bethe-Bloch?

Excellent for p < 1 GeV/c

Multi-wire proportional chambers,
Time-projection chambers

ALICE’s TPC PID power

.ﬁﬁj\u ] L |

ALICE performance
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Energy deposit per unit length (keV/cm)

Momentum (GeV/c)

Rings from LHCb’s RICH

>+ Direct measurement with Time-of-Flight (TOF)

> +Transition Radiation
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Geiger Muller Tube
lonizing +500 VDC
Radiation Q

Metal % 10 Meg
Tube Wall lonizing

First generation: the good-old single-wire: ke :‘« /‘) ’/

e (Geiger-Muller tube: high voltage — avalanche, o O) ﬂ {\_ . -
saturation of charge (no particle ID). First electrical / C\ Smoups___
sighal from a particle! P W% (dL)

* Also single-wire proportional & ionisation counters k-

: : : T /

Adding some more wires makes all the difference .

 Multi-Wire Proportional Counter (MWPC): spacial \
resolution achieved by combining signals from all X(\\\\X\\\\\
wires - revolutionised data collection rate W

e Adaptations: thin gap, resistive D_E N
plate and drift chambers / D> o

 Time Projection Chamber (TPC): AD_ -

e full 3-D reconstruction, x-y from wires and
segmented cathode of MWPC

e z = vdrift x tdrift from drift time

* Not only gases, but also liquid scintillators!

* New generation of MicroPattern gaseous detectors _ |
(MicroMegas, GEMs) — higher segmentation & rates ,omegas
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A few more considerations to make a tracker

. L aluminum
Hybrid or monolithic? backside layer
(ohmic contact) @
 Hybdrid sensors: typical connection of sensor Silicon | \ or
to front-end electronics chip through wire and gecans
bump-bonds solder bump
e Radiation hard, fast timing pixel readout — ===
e difficult and expensive (and you might have electronic chip
to do thousands of them!)
electron
DIODE TRANSISTOR TRANSISTOR
 CMOS technology: integrate signal- [ e ['j § il

processing circuits on sensor substrate
(sensor & electronics become one)!

DEEP PWELL

Sva.

 Cheap, easy to produce and assemble

e Radiation hardness & timing being worked PR AN

Epitaxial Layer P-
on
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Photodetectors

 Primary high energy photon — primary electron

e Electrons accelerated in electric field through a dynode chain producing more electrons —

internal amplification!

* Important properties: gain, quantum efficiency, spectral range, single photon detection...

PMT tube

Photocathode Focusin Photomultiplier
electrode tube (PMT)

lonisation
track

— 2 % f{i_,)  —
High energy 7 4 %~ —
photon | Low energy —
photons —
7 ¢ ) Connector
e ] \ J pins
Scintillator Primary Secondary Dynode Anode

electron electrons

Can be vacuum

e Old technology, but still used in many experiments
Quantum efficiency ~ 20-30% @ 400 nm

High gain, low noise, good timing, radiation hard

Segmenting the anode readout can give position
sensitivity (MAPMTS)

Some disadvantages: bulky, sensitive to magnetic field
(and expensive)
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Or solid state photodetectors
e Photon induces electron-hole pairs — photocurrent

Quantum efficiency ~ 100 %

Originally no internal gain (photo-diode)

Can be induced by operating at high reverse voltage —
Avalanche Photo-Diode (APD)

Even higher gain by connecting in parallel many APDs
together — Silicon Photomultipliers (SiPMs)
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Putting everything together

I 1 I 1 1 I

Om im 2m 3m 4m 5m

Hadron Superconducting
Calorimeter Solenoid

E
~
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Key:

Muon

Electron

Hadron (e.g. Pion)
----- Photon
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»)(',Yﬁ’k?\%{\ -
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Tracker

Electromagnetic
) , " Calorimeter
/)

LISA in Space

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS
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An d g I a nt O n eS EAS of cosmic rays in atmosphere

Shower core

Cherenkov _
light detectors | \
L .
Earth’s atmosphere acts as a giant absorber for 1*"7
cosmic rays J ~un
C harge(; particle ' : 'I J. **: ' "l \Iuo_n detettors]
X0 & A, . ~ 2000 x LAr , but, we have a lot of air! detectors

Atmospheric and ground-based detectors measure the shower, similar to calorimeters!
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