

Theory Session

Jonathan Kriewald

Jožef Stefan Institute

JRJC 2024

Jonathan Kriewald

Theory Session

Jonathan Kriewald

What is theoretical Physics?

Field of theoretical physics is incredibly broad:

- Methods and Phenomena strongly depend on Energy scale
- In general: try to find mathematical means to *model* phenomena in Nature
- Theory Theory Testable mathematical description of Nature
 - ⇒ Make **new predictions**, **test** predictions in experiments

Example: Einstein's General theory of Relativity

- ⇒ Explain Perihelion of Mercury, not possible with Newtonian Mechanics
- ⇒ Test GR in **bending of light around the Sun**
- ⇒ predict gravitational red-shift and gravitational waves

What is theoretical high-energy Physics?

Let's divide in two categories:

"Pure" Theory

- Develop Mathematical Foundations: Quantum Field Theory, String Theory, Renormalisation, ...
- Develop Computational Methods: Feynman Diagrams, Perturbation Theory, Lattice Field Theory, ...

Predict New Phenomena by demanding mathematical consistency: Symmetries, Gauge Theory, ...

What is theoretical high-energy Physics?

Phenomenology

Apply QFT to develop Models of Nature: Shell Model, Fermi Theory, Standard Model, Effective Field Theories, ...

Fit Models to Data and predict Observables to test models

Construct new models to describe "anomalous data"

No lose "theorem"

Jonathan Kriewald

What is theoretical high-energy Physics?

Let's divide in two categories:

Phenomenology

- Apply QFT to develop Models of Nature: Shell Model, Fermi Theory, Standard Model, Effective Field Theories, ...
- Fit Models to Data and predict Observables to test models

Construct new models to describe "anomalous data"

No lose "theorem"

Jonathan Kriewald

Why do we need Theory?

Why do we need Theory?

Ehhhh.... Because it's fun "??

The fun today:

Axion emission from Strange Matter in Core Collapse Supernovae (Maël Cavan)

Cosmological and astrophysical constraints on resonant *s*-wave Dark Matter annihilation (Margaux Jomain)

Giant Dipole Resonances and pygmy Resonances within the Large Scale Nuclear Shell Model approach (Oscar Le Noan)

(picture unrelated)

The fun today:

Axion emissic Coll Phenomenology Crash Course

Cosm constrair Matter ann

Giant Dipole Resonances and pygmy Resonances within the Large Scale Nuclear Shell Model approach (Oscar Le Noan)

(picture unrelated)

25/11/2024

IJS

The Standard Model – A success story

Strong arguments in f(l)avour of New Physics!

Some remaining puzzles of Nature:

SM matter

Strong arguments in f(l)avour of New Physics!

Some remaining puzzles of Nature:

Dark matter

SM matter

Strong arguments in f(l)avour of New Physics!

Some remaining puzzles of Nature:

Dark matter

Baryon asymmetry of the Universe

SM matter

ν -oscillations

Neutrino oscillation between three generations

Some "theoretical" issues:

Quantum theory of Gravity

Flavour puzzle

- "Hierarchy problem": why is the Higgs so light and the Planck-scale so high?
- Strong CP problem": what is the mechanism behind the absence of $G\tilde{G}$?

Jonathan Kriewald

Axions & Supernovae

The strong CP problem

Quantum ChromoDynamics (QCD) symmetry is SU(3)

Non-abelian symmetries allow for "special" term in the Lagrangian:

$$+\theta \frac{g}{32\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} \text{ with } \tilde{G}_{\mu\nu} = \varepsilon_{\alpha\beta\mu\nu} G^{\alpha\beta}$$
$$\Rightarrow G\tilde{G} \text{ term is CP violating}$$

Measurements of neutron EDM:

 $\bar{\theta} = \theta - \arg \det Y_u Y_d \lesssim 10^{-10}$

Coincidence?

(For SU(2) the term can be re-absorbed in the W fields)

Axions and the strong CP problem

Technical Naturalness à la 't Hooft: a given parameter is allowed to be small if it enhances the symmetry of the Theory

Give Symmetry origin to a small $\bar{ heta}$? e.g. Left-Right symmetry, many approaches ...

(QCD-) Axions:

$$\mathcal{L} \supset \left(\frac{a}{f_a} + \theta\right) \frac{1}{32\pi^2} G\tilde{G}$$

Symmetry: $a \rightarrow a + \alpha f_a, \theta \rightarrow \theta - \alpha$

Generate other couplings via RGE:

$$\mathcal{L} \supset \frac{\partial_{\mu} a}{f_Q} Q^{\dagger} \sigma^{\mu} Q$$

Many technical details to UV origin, here just few comments on axion EFT...

Jonathan Kriewald

For a proper intro axions see e.g. the <u>TASI lecture notes</u> by Anson Hook

Axions and the strong CP problem

Technical Naturalness à la 't Hooft: a given parameter is allowed to be small if it enhances the symmetry of the Theory

Give Symmetry origin to a small $\bar{ heta}$? e.g. Left-Right symmetry, many approaches ...

(QCD-) Axions:

$$\mathscr{L} \supset \left(\frac{a}{f_a} + \theta\right) \frac{1}{32\pi^2} G\tilde{G}$$

Symmetry: $a \rightarrow a + \alpha f_a$, $\theta \rightarrow \theta - \alpha$

Generate other couplings via RGE:

$$\mathcal{L} \supset \frac{\partial_{\mu} a}{f_Q} Q^{\dagger} \sigma^{\mu} Q$$

Many technical details to UV origin, here just few comments on axion EFT...

Jonathan Kriewald

For a proper intro axions see e.g. the <u>TASI lecture notes</u> by Anson Hook

Supernovae

Some fun facts:

(For everything else see Cosmo-session and <u>Mael's talk</u>)

- Use Type Ia Supernovae e.g. as Standard Candles for distance measurements Maaaaany observations
- Observed 1 (one) supernova with Neutrino burst: SN 1987A
- Supernova 1987A was a Core collapse Supernova (Type II)
- $\blacktriangleright \sim 10^{58}$ were neutrinos emitted, 25 observed TWENTY-FIVE
- Also spectral measurements
- Supernova models rely on this data

Use Supernovae as Ultra-high-luminosity particle physics laboratories

Dark Matter & Astrophysics

Evidence for Dark Matter

Galaxy rotation curves do not follow expectations for visible matter

Bullet Cluster: Colliding galaxies visible matter does not explain result

(Large) Structure formation does not work with visible matter

CMB multipole spectrum, **BAO's**, **Redshift** distortions, Lyman- α forrest, ...

Some of these (but not all) are explainable with modified gravity, or MOdified Newtonian Dynamics (MOND)

Jonathan Kriewald

IJS

What is Dark Matter?

What is Dark Matter?

What is Dark Matter?

How do we find Dark Matter?

Structure formation: Cold or warm DM?

Bullet Cluster: Self-interactions?

Detection on Earth?

Today: Indirect detection of Dark Matter (and how to escape it): Margaux's talk

Jonathan Kriewald

Nuclear Theory

Nuclear Theory in a nutshell

The problem: many body interactions

Few particles: $2 \rightarrow 2, 2 \rightarrow N$ scatterings, $1 \rightarrow N$ decays

Many many particles: Describe collective behaviour ⇒Statistical Mechanics: Gases, Fluids, Plasmas, ... ⇒ Low energy: condensed matter, soft matter, crystals, ...

Nuclear Physics somewhere in between ... Need to model **strong interactions** between **(many)** nucleons Require *large-scale* computations (expensive)

Shell model

Explain Magic Numbers: 2, 8, 20, 28, 52, 82, 126, ...

Predict "Island of Stability"

Many more (and more advanced approaches):

Large Scale Shell Model (LSSM), (Relativistic) (Quasi) Random Phase Approximation, Open Quantum Systems, ...

Jonathan Kriewald

25/11/2024

(For everything else

see Nuclear session

and Oscar's talk)

Describe basic Nuclear structure

IS

Why Nuclear Theory?

Experimentalists and Theoreticians across all Energy scales rely on Nuclear Theory:

- Cosmology: Big Bang Nucleosynthesis (BBN)
- Astrophysics: Theory of Stars, Supernovae, etc, ...
- Particle Physics: Neutrino Experiments @ Nuclear Reactors, test SM in Nuclear transitions, β-decay experiments, ...

Industry/everyday life: Nuclear Reactors, Imaging technologies for Medicine, Radiotherapy, ...

Why theoretical high-energy Physics ?

because it is fun, duh! 🤤

Why theoretical high-energy Physics ?

Ok it's also useful:

Describe an make sense of phenomena across all settings and energy scales

Even if abstract, it is **physics**, think e.g. about the **no-lose "theorem**"

Necessary for experiments: think of all the theory in **GEANT4**, **Pythia**, ...

Enjoy the session :)

