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Foundation models in Science 30’

Heterogenous Data and Multimodal Representation Learning 30’

Inverse Problem - Likely hood free Simulation based approach 30’



Foundation models in Science
• What is a foundation model?


• Is a foundation model without a LLMs is still a foundation model ?


• What’s the point of foundation models ?


• Is leaving out any physic intuition lazy or smart ? (Symmetries …) 


• What are the benefits / risks (ecological, automated science, reliability, etc)?


• Getting from simulation to real data ?


• What are the key considerations in preprocessing large datasets for use with large models?


• How do the data sources (human vs. instrument data vs simulated data) impact the design 
and application of foundation models in science or engineering?


• Considering the limitations of LLMs in science or engineering, such as hallucination and 
biases, How might Retrieval-Augmented Generation (RAG) address these challenges?



Heterogenous Data and Multimodal 
Representation Learning

• What can we say about the process and challenges of aligning latent spaces 
in multimodal learning?


• Question of mix of expert / modality dedicated models


• What are the architectural constraints when designing models for hetero/
multimodal learning, and how can these be overcome?


• How to mix Neural Networks encoding with Symbolic Engine ?



• What are the advantages and limits of using likelihood-free ML, simulation-based approaches 
in solving inverse problems?


• What do you see is the best tool to solve IP 


• How does causality give us tools for IPs?


• How do generative models relate to solutions for IPs?


• IP can be treated as an unfolding problem, which mixes detector effects, simulation quality 
AND the possibility of new physics. How can we think about each of these sources of 
uncertainties?


• Active learning could be very useful in IP: Can we learn which parts of parameter space are 
the most interesting to simulate?


• Inference seems to be very expensive (e.g. reversible jump MCMC). What are some 
approaches for moving (amortizing) this cost into the training process?

Inverse Problem - Likely hood free 

Simulation based approach


