2

Optimizing PyTorch
Accelerating Training and Inference with
Compilation, Custom Kernels, and Beyond

Alvaro Moran - Hugging Face - 2024-10-03

What is Hugging Face?

A Hub with over 1 000 000 models available.
=~ Focused on having a positive impact on the Al field.

~_ Hugging Face Models Datasets Spaces Posts Docs Pricing ~= Login @I{lYs!

Libraries Datasets Languages Licenses Models | | Full-text search Tl Sort: Trending
Other

x stepfun-ai/GOT-0CR2_0

Multimodal

% Image-Text-to-Text o meta-llama/Llama-3.2-11B-Vision-Instruct

[@ Visual Question Answering

Who am|?

< ML Engineer, member of the Optimization Team.

@ huggingface.co

~ . Hugging Face Q Search models, datasets, users... Models Datasets Spaces Posts Docs Pricing ~=
Log in using Single Sign-On to view activity within the huggingface org. Login

* Optimum +

C° o e L o o 2 vt 2 e ondsz A o
earchn aocumentation

220 v JEN v i @ Optimum @ Optimur
OVERVIEW &) Optimum is an extension of Transformers that provides a set of performance optimization tools to |
U 10 CIO|
train and run models on targeted hardware with maximum efficiency.
Installation , - : .
The Al ecosystem evolves quickly, and more and more specialized hardware along with their own
Quick tour
optimizations are emerging every day. As such, Optimum enables developers to efficiently use any of
Notebooks

these platforms with the same ease inherent to Transformers.

Agenda

« Overview of PyTorch.

« Why optimization is useful.

- Key techniques: hardware usage, torch.compile, custom
kernels, and mixed precision and distributed processing.

Pytorch Overview

One of the most popular machine learning libraries.
Accelerated tensor computing for CPUs, GPUs, etc.
Deep neural library built on automatic differentiation system.
Used in science to create and use models for complex tasks.

PyTorch

Why Do We Need Optimization

«, Faster inference and training.
(Compress data and information, avoid out-of-memory errors.
2, Tailor a model for constrained hardware environments.

Use the Hardware

Pytorch can be accelerated on different hardware.

a = torch.tensor([1l, 2, 3]).to("cuda")
model .cuda()
pipe = pipeline("1mage-segmentation”,

device="cuda",
framework="pt")

torch.compile

It makes code faster when running several times on a given
hardware.

@torch.compile NOTE: torch.compile can give
def ng (X, y): | massive speed-up, but it can
g - EOrCE'mn(X) be hard to use it on a whole
= torch.cos(y) model. Try using it on smaller
return a + b
code blocks.

outputs = foo(x, V)

Custom Kernels

Some operations can be optimized to be even more efficient on a
given hardware. To do that it's possible to use custom kernels:

& NVIDIA.

» XLA and Pallas - easy, only on GPU and TPU
 Triton -

+ CUDA (and C++ extensions) - hard, GPU @ OpenAl

L .

oy

Sy N

Open

Half and Mixed Precision, Quantization

« Use torch.floatl6, torch.bfloatl6 if the hardware you
use allows it. kd Better performance, lower memory, similar

accuracy.
» Quantize your model: use bitsandbytes, optimum-quanto,

mar1in or others. Mostly for matrix multiplication. kd Much
lower memory, lower accuracy, but usually slower.

Distributed Inference and Training

Model too big? Distribute!
. Inferenceld torch.distributed, difficult.

. Training, &4 Fully Sharded Data Parallel (FSDP), DeepZero.

» Use HuggingFace’s accelerate library to simplify these
scenarios.

GPUI GPU

/- N\ —
Layver 1 Loyer 1 Laver 1
-
) —> |G Lo

¥

L.ou/e_r 3

Practical Example

A Jupvter notebook is available to walk through some of the

mentioned techniques, and it is possible to run it on a common
laptop.

@ b v <

@ github.com

Preview Code Blame 365 lines (365 loc) - 41.8 KB

Optimize Inference on a Llama 3.2 1B on Pytorch

To start with, some imports will be made.

import time
import torch

from transformers import AutoTokenizer, AutoModelForCausalLM
Define the model ID and use the transformers utilities to load model and tokenizer from the Hugging Face hub.

model id = "meta-llama/Llama-3.2-1B"

model = AutoModelForCausalLM.from pretrained(model id)

tokenizer = AutoTokenizer.from pretrained(model id)

Setting "pad token id" to "eos token id" for open-end generation.
model.generation config.pad token id = tokenizer.eos_ token id

Note no particular parameters have been used, meaning this will be loaded on CPU with FP32 precision.

https://github.com/tengomucho/aissai-2024-optimization/blob/main/optimize-llama3.2-1B.ipynb

Thank You!

huggingface.co

https://huggingface.co

