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Accelerating Training and Inference with 
Compilation, Custom Kernels, and Beyond



What is Hugging Face?

📅 Founded in 2016 
🏢 HQ’d in New York, offices in Paris and few other cities. 
🌟 A Hub with over 1 000 000 models available. 
👉 Focused on having a positive impact on the AI field.



Who am I?

👋 ML Engineer, member of the Optimization Team. 



Agenda

• Overview of PyTorch. 
• Why optimization is useful. 
• Key techniques: hardware usage, torch.compile, custom 

kernels, and mixed precision and distributed processing.



Pytorch Overview

• One of the most popular machine learning libraries. 
• Accelerated tensor computing for CPUs, GPUs, etc. 
• Deep neural library built on automatic differentiation system. 
• Used in science to create and use models for complex tasks. 



Why Do We Need Optimization

🏃 Faster inference and training. 
🗜 Compress data and information, avoid out-of-memory errors. 
🪡 Tailor a model for constrained hardware environments. 



Use the Hardware

Pytorch can be accelerated on different hardware. 

a = torch.tensor([1, 2, 3]).to("cuda") 
  
model.cuda() 

pipe = pipeline("image-segmentation", 
                device="cuda", 
                framework="pt") 



torch.compile

It makes code faster when running several times on a given 
hardware.  

@torch.compile 
def foo(x, y): 
    a = torch.sin(x) 
    b = torch.cos(y) 
    return a + b 

outputs = foo(x, y)   

NOTE: torch.compile can give 
massive speed-up, but it can 
be hard to use it on a whole 
model. Try using it on smaller 
code blocks.



Custom Kernels

Some operations can be optimized to be even more efficient on a 
given hardware. To do that it’s possible to use custom kernels: 

• XLA and Pallas - easy, only on GPU and TPU 
• Triton - somewhat hard, GPU 
• CUDA (and C++ extensions) - hard, GPU 



Half and Mixed Precision, Quantization

• Use torch.float16, torch.bfloat16 if the hardware you 
use allows it. ➡ Better performance, lower memory, similar 
accuracy. 

• Quantize your model: use bitsandbytes, optimum-quanto,  
marlin or others. Mostly for matrix multiplication. ➡ Much 
lower memory, lower accuracy, but usually slower.



Distributed Inference and Training

Model too big? Distribute! 
• Inference ➡ torch.distributed, difficult. 
• Training, ➡ Fully Sharded Data Parallel (FSDP), DeepZero. 
• Use HuggingFace’s accelerate library to simplify these 

scenarios.



Practical Example

A Jupyter notebook is available to walk through some of the 
mentioned techniques, and it is possible to run it on a common 
laptop. 

https://github.com/tengomucho/aissai-2024-optimization/blob/main/optimize-llama3.2-1B.ipynb


Thank You!
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