
Optimizing PyTorch

Alvaro Moran - Hugging Face - 2024-10-03

Accelerating Training and Inference with
Compilation, Custom Kernels, and Beyond

What is Hugging Face?

📅 Founded in 2016
🏢 HQ’d in New York, offices in Paris and few other cities.
🌟 A Hub with over 1 000 000 models available.
👉 Focused on having a positive impact on the AI field.

Who am I?

👋 ML Engineer, member of the Optimization Team.

Agenda

• Overview of PyTorch.
• Why optimization is useful.
• Key techniques: hardware usage, torch.compile, custom

kernels, and mixed precision and distributed processing.

Pytorch Overview

• One of the most popular machine learning libraries.
• Accelerated tensor computing for CPUs, GPUs, etc.
• Deep neural library built on automatic differentiation system.
• Used in science to create and use models for complex tasks.

Why Do We Need Optimization

🏃 Faster inference and training.
🗜 Compress data and information, avoid out-of-memory errors.
🪡 Tailor a model for constrained hardware environments.

Use the Hardware

Pytorch can be accelerated on different hardware.

a = torch.tensor([1, 2, 3]).to("cuda")

model.cuda()

pipe = pipeline("image-segmentation",
 device="cuda",
 framework="pt")

torch.compile

It makes code faster when running several times on a given
hardware.

@torch.compile
def foo(x, y):
 a = torch.sin(x)
 b = torch.cos(y)
 return a + b

outputs = foo(x, y)

NOTE: torch.compile can give
massive speed-up, but it can
be hard to use it on a whole
model. Try using it on smaller
code blocks.

Custom Kernels

Some operations can be optimized to be even more efficient on a
given hardware. To do that it’s possible to use custom kernels:

• XLA and Pallas - easy, only on GPU and TPU
• Triton - somewhat hard, GPU
• CUDA (and C++ extensions) - hard, GPU

Half and Mixed Precision, Quantization

• Use torch.float16, torch.bfloat16 if the hardware you
use allows it. ➡ Better performance, lower memory, similar
accuracy.

• Quantize your model: use bitsandbytes, optimum-quanto,
marlin or others. Mostly for matrix multiplication. ➡ Much
lower memory, lower accuracy, but usually slower.

Distributed Inference and Training

Model too big? Distribute!
• Inference ➡ torch.distributed, difficult.
• Training, ➡ Fully Sharded Data Parallel (FSDP), DeepZero.
• Use HuggingFace’s accelerate library to simplify these

scenarios.

Practical Example

A Jupyter notebook is available to walk through some of the
mentioned techniques, and it is possible to run it on a common
laptop.

https://github.com/tengomucho/aissai-2024-optimization/blob/main/optimize-llama3.2-1B.ipynb

Thank You!

huggingface.co

https://huggingface.co

