

A causal perspective on reliable and interpretable representation learning

Michel Besserve

MPI for Intelligent Systems, Tübingen, Germany

AISSAI Workshop Heterogeneous Data and Large Representation Models in Science

Oct. 2nd, 2024

Artificial Intelligence (AI) has challenges ahead High hopes for AI to transform all economic sectors.

But many technical, strategic and societal issues ahead:

- reliability and ethical issues;
- data and compute requirements;
- pressure on resources and sustainability.

The ugly truth behind ChatGPT: AI is guzzling resources at planet-eating rates *Mariana Mazzucato* [The Guardian, May 30th 2024]

We need general frameworks to address these issues. *Causality* allows to:

- phrase rigorously meaningful requirements for AI,
- derive theoretical guaranties for them,
- formulate problems and explanations in a language understandable by humans.

What is causality about?

• Representing knowledge about the world and how it can be changed.

- Specificity : Modularity of the system
- Modules are called "mechanisms"

What is causality about?

• Representing knowledge about the world and how it can be changed.

- Specificity : Modularity of the system
- Modules are called "mechanisms"
- > Make plausible changes to a mechanism to:
 - ➤Explain "why things happen",
 - ➤Make predictions.

Causal graph

Show the influence of variables on each other

Mechanisms = "Structural assignments"

Computes child node value as a function of parents

$$\begin{bmatrix} X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\epsilon_1) & \text{Independent} \\ X_2 \coloneqq f_{2,\boldsymbol{\theta_2}}(X_1,\epsilon_2) & \text{variables} \\ X_3 \coloneqq f_{3,\boldsymbol{\theta_3}}(X_1,X_2,\epsilon_3) \end{bmatrix}$$

Causal graph

Show the influence of variables on each other

Mechanisms = "Structural assignments"

Computes child node value as a function of parents

$$X_{1} \coloneqq f_{1,\theta_{1}}(\epsilon_{1}) \qquad \begin{array}{c} \text{Independent} \\ \text{``Exogenous''} \\ X_{2} \coloneqq f_{2,\theta_{2}}(X_{1},\epsilon_{2}) \\ X_{3} \coloneqq f_{3,\theta_{3}}(X_{1},X_{2},\epsilon_{3}) \end{array}$$

(X) Probability of background image

Causal graph Show the influence of variables on each other

Mechanisms = "Structural assignments" *Computes child node value as a function of parents*

$$\begin{bmatrix} X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\epsilon_1) & \text{Independent}\\ \textbf{Independent}\\ \textbf{Independent}\\ \textbf{Exogenous''}\\ \textbf{Variables}\\ \textbf{X}_3 \coloneqq f_{2,\boldsymbol{\theta_2}}(X_1,\epsilon_2) & \textbf{Variables}\\ \textbf{X}_3 \coloneqq f_{3,\boldsymbol{\theta_3}}(X_1,X_2,\epsilon_3) \end{bmatrix}$$

Causal graph Show the influence of variables on each other **Mechanisms = "Structural assignments"** *Computes child node value as a function of parents*

$$\begin{bmatrix} X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\epsilon_1) & \text{Independent} \\ X_2 \coloneqq f_{2,\boldsymbol{\theta_2}}(X_1,\epsilon_2) & \text{variables} \\ X_3 \coloneqq f_{3,\boldsymbol{\theta_3}}(X_1,X_2,\epsilon_3) \end{bmatrix}$$

Probability of animal **given background**

M-

Probability of

background image

Samples of object-background combination images.

$$\begin{cases} X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\epsilon_1) \\ X_2 \coloneqq f_{2,\boldsymbol{\theta_2}}(X_1,\epsilon_2) \\ X_3 \coloneqq f_{3,\boldsymbol{\theta_3}}(X_1,X_2,\epsilon_3) \end{cases}$$

Unintervened model

Soft intervention: « only sharks when in the sea »

$$egin{aligned} & X_1 \coloneqq f_{1, oldsymbol{ heta}_1}(\epsilon_1) \ & X_2 \coloneqq f_{2, oldsymbol{ heta}_2}(X_1, \epsilon_2) \ & X_3 \coloneqq f_{3, oldsymbol{ heta}_3}(X_1, X_2, \epsilon_3) \end{aligned}$$

/ \

$$\begin{cases} X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\epsilon_1) \\ X_2 \coloneqq h_{2,\boldsymbol{\theta_2}}(\boldsymbol{\lambda}_1, \boldsymbol{\epsilon}_2) \\ X_3 \coloneqq f_{3,\boldsymbol{\theta_3}}(X_1, X_2, \boldsymbol{\epsilon}_3) \end{cases}$$

Unintervened model

 X_2

Soft intervention: « only sharks when in the sea »

 $[X_1 \coloneqq f_{1,\boldsymbol{\theta}_1}(\epsilon_1)]$

 $\begin{cases} X_1 \coloneqq f_{1,\boldsymbol{\theta}_1}(\boldsymbol{\theta}_1) \\ X_2 \coloneqq h_{2,\boldsymbol{\theta}_2}(\boldsymbol{\theta}_1, \boldsymbol{\epsilon}_2) \\ X_3 \coloneqq f_{3,\boldsymbol{\theta}_3}(X_1, X_2, \boldsymbol{\epsilon}_3) \end{cases}$

$$\begin{array}{c} \swarrow X_{1} \\ \swarrow X_{3} \end{array} \begin{bmatrix} X_{1} \coloneqq f_{1,\boldsymbol{\theta}_{1}}(\epsilon_{1}) \\ \hline X_{2} \coloneqq f_{2,\boldsymbol{\theta}_{2}}(X_{1},\epsilon_{2}) \\ \hline X_{3} \coloneqq f_{3,\boldsymbol{\theta}_{3}}(X_{1},X_{2},\epsilon_{3}) \end{array}$$

Hard intervention: « only Sharks, everywhere » $\begin{array}{c}
X_{2} \leftarrow \swarrow - X_{1} \\
X_{3} \leftarrow X_{3}
\end{array}$ $\begin{array}{c}
X_{1} \coloneqq f_{1,\theta_{1}}(\epsilon_{1}) \\
X_{2} \coloneqq g_{2,\theta_{2}}(\epsilon_{2}) \\
X_{3} \coloneqq f_{3,\theta_{3}}(X_{1}, X_{2}, \epsilon_{3})
\end{array}$

Unintervened model

$$X_{2} \leftarrow X_{1}$$

$$X_{1} \coloneqq f_{1,\theta_{1}}(\epsilon_{1})$$

$$X_{2} \coloneqq f_{2,\theta_{2}}(X_{1},\epsilon_{2})$$

$$X_{3} \coloneqq f_{3,\theta_{3}}(X_{1},X_{2},\epsilon_{3})$$

Hard intervention: « only Sharks, everywhere » $[X_1 \coloneqq f_1 \boldsymbol{\rho}_{\epsilon}(\epsilon_1)]$

$$X_{1} \coloneqq f_{1,\boldsymbol{\theta_{1}}}(\boldsymbol{\epsilon_{1}})$$

$$X_{2} \coloneqq g_{2,\boldsymbol{\theta_{2}}}(\boldsymbol{\epsilon_{2}})$$

$$X_{3} \coloneqq f_{3,\boldsymbol{\theta_{3}}}(X_{1}, X_{2}, \boldsymbol{\epsilon_{3}})$$

Counterfactuals: « had it been a shark instead of a stingray » $X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\boldsymbol{\epsilon_1})$ </ $X_2 \coloneqq g_{2,\boldsymbol{\theta_2}}(\epsilon_2)$ $\overline{X_3 \coloneqq f_{3,\boldsymbol{\theta}_3}(X_1, X_2, \boldsymbol{\epsilon}_3)}$

Causal inference

Causal graph

Show the influence of variables on each other

Three types of inference tasks based on data: Causal discovery: "finding the arrows" Causal effect estimation: "how strong is causation?" Causal representation learning: "finding the variables" [= building a **mapping** from the observations to causal variables]

Three types of dataset: Observational, interventional, counterfactual.

Mechanisms = "Structural equations" Compute child node value as a function of parents

$$\begin{bmatrix} X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\epsilon_1) & \text{Independent}\\ X_2 \coloneqq f_{2,\boldsymbol{\theta_2}}(X_1,\epsilon_2) & \text{variables}\\ X_3 \coloneqq f_{3,\boldsymbol{\theta_3}}(X_1,X_2,\epsilon_3) \end{bmatrix}$$

Causal inference

Causal graph

Show the influence of variables on each other

Mechanisms = "Structural equations" Compute child node value as a function of parents

 $\begin{bmatrix} X_1 \coloneqq f_{1,\boldsymbol{\theta_1}}(\epsilon_1) & \text{Independent} \\ X_2 \coloneqq f_{2,\boldsymbol{\theta_2}}(X_1,\epsilon_2) & \text{variables} \\ X_3 \coloneqq f_{3,\boldsymbol{\theta_3}}(X_1,X_2,\epsilon_3) \end{bmatrix}$

Three types of inference tasks based on data: Causal discovery: "finding the arrows" Causal effect estimation: "how strong is causation?" Causal representation learning: "finding the variables" [= building a mapping from the observations to causal variables]

Three types of dataset: Observational, interventional, counterfactual.

 \leftarrow This presentation

Shark

No shark

Shark

No shark

Illustration: shortcut features

Features we are not « interested in » might be used to improve classification...

Illustration: shortcut features

Features we are not « interested in » might be used to improve classification...

- Shortcut features are found because they are highly predictive on the training data.
- They are **not an issue** if the deployment data has the same distribution as the training data
 - -> "same environment"
- Actually, dropping all such features would typically decrease the performance!
- But this makes the AI system not robust to changes of the environment...

Illustration: shortcut features

We can model the changes of environment with interventions.

- The intervention affects the shortcut pathway by changing the learnt statistical dependency between object class and some backround features.
- Avoiding such settings requires scrutinizing the data generating process, in particular dataset collection!
 -> Hard for most complex real-world data.
- Typical dangerous cases: data collected with different measurement systems...

...e.g.: replacing a particle detector.

• Automatically learning a good approximation of the causal data generating process could help.

Intervening in Deep generative models

[Besserve et al., ICLR 2020]

• Many approaches:

[Brock, et al. ICLR 2019]

• Many approaches:

Dataset

Distribution

 \mathcal{D}

VAE, GAN, Stable Diffusion,

[Brock, et al. ICLR 2019]

• Many approaches:

Dataset

 \mathcal{D}

VAE, GAN, Stable Diffusion,

• Can generate highly realistic samples

[Brock, et al. ICLR 2019]

ICM for generating counterfactuals

- Generative models have independent latents but dependent properties
- Look for internal variables with proper causal interpretation!

An approximate causal abstraction

We build a form of causal abstraction [Rubenstein et al, 2017, Beckers et al., 2020], where we group hidden layer neurons into macro-variables on which we want to intervene at once. Groups are meant to encode high level properties of the images.

Microscopic level

Idea: group neurons that have similar effect on the generated images.

An approximate causal abstraction

We build a form of causal abstraction [Rubenstein et al, 2017, Beckers et al., 2020], where we group hidden layer neurons into macro-variables on which we want to intervene at once. Groups are meant to encode high level properties of the images.

Macroscopic level

Idea: group neurons that have similar effect on the generated images.

Counterfactual generation

Examples for BigGAN (Brock et al., 2018) on ImageNet

Original 1

Counterfactual

"Counterfactual" object

"Factual" image

- Several early layers allow objectbackground separation,
- Other separate shape-texture

We use counterfactuals to probe state of the art classifiers.

[Besserve et al., ICLR 2020]

Counterfactual generation

Examples for BigGAN (Brock et al., 2018) on ImageNet

Original 1

Counterfactual

"Counterfactual" object

"Factual" image

- Several early layers allow objectbackground separation,
- Other separate shape-texture

We use counterfactuals to probe state of the art classifiers.

Resnet_v2_50	Inception_v3	
Koala	Koala	
Nasnet_large	Inception_resnet_v2	
Teddy	Teddy	

Counterfactual generation

Examples for BigGAN (Brock et al., 2018) on ImageNet Counterfactual

Original 1

Original 2

"Counterfactual" object

"Factual" image

- Several early layers allow object-background separation,
- Other separate shape-texture -

[Besserve et al., ICLR 2020]

We use counterfactuals to probe state of the art classifiers.

Identifiability of causal representations

[Gresele*, von Kügelgen* et al, NeurIPS 2021]

[Buchholz et al., NeurIPS 2022]

[Reizinger^{*}, Gresele^{*}, Brady^{*} et al. NeurIPS2022]

Assumption: Observed data is parameterized by hidden causal variables

$$X \coloneqq f(Z_1, Z_2, \dots, Z_K) \Longrightarrow (Z_1, Z_2, \dots, Z_K) = f^{-1}(X)$$

Assumption: Observed data is parameterized by hidden causal variables

$$X \coloneqq f(Z_1, Z_2, \dots, Z_K) \Longrightarrow (Z_1, Z_2, \dots, Z_K) = f^{-1}(X)$$

Ground truth Causal representation

"Twin" learned Causal representation

Assumption: Observed data is parameterized by hidden causal variables

$$X \coloneqq f(Z_1, Z_2, \dots, Z_K) \Longrightarrow (Z_1, Z_2, \dots, Z_K) = f^{-1}(X)$$

Assumption: Observed data is parameterized by hidden causal variables

$$X \coloneqq f(Z_1, Z_2, \dots, Z_K) \Longrightarrow (Z_1, Z_2, \dots, Z_K) = f^{-1}(X)$$

Identifiability:

If the generative model fits the data perfectly, it corresponds to the ground-truth model (up to trivial transformations).

Implications:

We can do "data augmentation" by fitting the model and performing interventions and counterfactuals.

Assumption: Observed data is parameterized by hidden causal variables

$$X \coloneqq f(Z_1, Z_2, \dots, Z_K) \Longrightarrow (Z_1, Z_2, \dots, Z_K) = f^{-1}(X)$$

Identifiability:

If the generative model fits the data perfectly, it corresponds to the ground-truth model (up to trivial transformations).

Implications:

We can do "data augmentation" by fitting the model and performing interventions and counterfactuals.

[Hyvärinen & Pajunen, Neur. Netw. 1999, Locatello et al, ICML 2019]

[Hyvärinen & Pajunen, Neur. Netw. 1999, Locatello et al, ICML 2019]

Generic Non-identifiability in Generative Models [Hyvärinen & Pajunen, Neur. Netw. 1999, Locatello et al, ICML 2019]

[Hyvärinen & Pajunen, Neur. Netw. 1999, Locatello et al, ICML 2019]

[Hyvårinen & Pajunen, Neur. Netw. 1999, Locatello et al, ICML 2019]

[Hyvårinen & Pajunen, Neur. Netw. 1999, Locatello et al, ICML 2019]

Constraining f to a smaller (large!) model class, via regularized maximum likelihood, with Normalizing flows, favors identifiability [Gresele*, von Kügelgen* et al, NeurIPS 2021; Buchholz et al., NeurIPS 2022]

maximize/
$$\boldsymbol{\theta} \quad \mathcal{L}_{IMA}(\boldsymbol{x}; \boldsymbol{f}_{\boldsymbol{\theta}}, \lambda) = \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) - \lambda . c_{IMA}(\boldsymbol{f}_{\boldsymbol{\theta}}, \boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x}))$$

Constraining f to a smaller (large!) model class, via regularized maximum likelihood, with Normalizing flows, favors identifiability [Gresele*, von Kügelgen* et al, NeurIPS 2021; Buchholz et al., NeurIPS 2022]

$$\text{maximize}/\boldsymbol{\theta} \quad \mathcal{L}_{IMA}(\boldsymbol{x}; \boldsymbol{f}_{\boldsymbol{\theta}}, \lambda) = \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) - \lambda . c_{IMA}(\boldsymbol{f}_{\boldsymbol{\theta}}, \boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x}))$$

>Variational Auto-Encoders (VAE) implicitly constrain f in the above model class and inherit identifiability benefits. [Reizinger*, Gresele*, Brady*, et al. NeurIPS2022] Evidence Lower BOund : ELBO($x; \theta, \phi$) = log $p_{\theta}(x) - KL(q_{\phi}(z|x) || p_{\theta}(z|x))$ ELBO gap ≥ 0 minimize/ ϕ

maximize/ θ

Assumptions for *learning* causal generative Als

To identify causal representations, we need either:

(1) inductive biases (assumptions on the ground truth model)

[Gresele*, von Kügelgen* et al, *NeurIPS* 2021; Buchholz et al., *NeurIPS* 2022;

Reizinger*, Gresele*, Brady* et al. *NeurIPS* 2022; Leeb et al., *ICLR* 2023]

(2) multi-environment data = interventions. [Keurti et al., *ICML* 2023; von Kügelgen et al., *NeurIPS*, 2023; Liang et al., *NeurIPS*, 2023]

(3) multi-view data = counterfactuals.

[Besserve et al. AAAI 2021; von Kügelgen et al., NeurIPS, 2021]

[Reizinger*, Gresele*, Brady*, et al. NeurIPS2022]

Assumptions for *learning* of causal generative AI

To identify causal representations, we need either:

(1) inductive biases (assumptions on the ground truth model)

[Gresele*, von Kügelgen* et al, *NeurIPS* 2021; Buchholz et al., *NeurIPS* 2022;

Reizinger*, Gresele*, Brady* et al. NeurIPS 2022; Leeb et al., ICLR 2023]

(2) multi-environment data = interventions.

[Keurti et al., ICML 2023; von Kügelgen et al., NeurIPS, 2023; Liang et al., NeurIPS, 2023]

(3) multi-view data = counterfactuals.

[Besserve et al. AAAI 2021; von Kügelgen et al. NeurIPS, 2021]

[Von Kügelgen et al NeurIPS 2023]

Assumptions for *learning* of causal generative AI

To identify causal representations, we need either:

(1) inductive biases (assumptions on the ground truth model class)

[Gresele^{*}, von Kügelgen^{*} et al, *NeurIPS* 2021; Buchholz et al., *NeurIPS* 2022;

Reizinger*, Gresele*, Brady* et al. NeurIPS 2022; Leeb et al., ICLR 2023]

(2) multi-environment data = interventions.

[von Kügelgen et al., NeurIPS, 2023; Liang et al., NeurIPS, 2023]

(3) multi-view data = counterfactuals, and structured sample-dependency

[Besserve et al. AAAI 2021: von Kügelgen et al., NeurIPS, 2021, Keurti et al., ICML 2023]

LT: latent transforn Views generated by	nation _{Class}
DA: colour distortion LT: change hues	$\begin{array}{c} 0.42 \pm 0.01 \\ \textbf{1.00} \pm 0.00 \end{array}$
DA: crop (large) DA: crop (small) LT: change positions	$\begin{array}{c} 0.28 \pm 0.04 \\ 0.14 \pm 0.00 \\ \textbf{1.00} \pm 0.00 \end{array}$
DA: crop (large) + colour distortion DA: crop (small) + colour distortion LT: change positions + hues	$0.97 \pm 0.00 \\ 1.00 \pm 0.00 \\ 1.00 \pm 0.00$
DA: rotation LT: change rotations	$\begin{array}{c} 0.33 \pm 0.06 \\ \textbf{1.00} \pm 0.00 \end{array}$
DA: rotation + colour distortion LT: change rotations + hues	$0.59 \pm 0.01 \\ 1.00 \pm 0.00$

[Von Kügelgen et al., NeurIPS, 2021]

Sample dependency-based identification: Case 1

- Data augmentation is a particular case of self-supervised learning:
 - Augmentations change "style" of the image but not "content",
 - Data-set contains (original, augmented) pairs of samples
 - Result: augmentation-invariant representations identify content.

DA: data augmentation LT: latent transformation

Views generated by	Class
DA: colour distortion LT: change hues	$\begin{array}{c} 0.42 \pm 0.01 \\ \textbf{1.00} \pm 0.00 \end{array}$
DA: crop (large) DA: crop (small) LT: change positions	$\begin{array}{c} 0.28 \pm 0.04 \\ \textbf{0.14} \pm 0.00 \\ \textbf{1.00} \pm 0.00 \end{array}$
DA: crop (large) + colour distortion DA: crop (small) + colour distortion LT: change positions + hues	$0.97 \pm 0.00 \\ 1.00 \pm 0.00 \\ 1.00 \pm 0.00$
DA: rotation LT: change rotations	$\begin{array}{c} 0.33 \pm 0.06 \\ \textbf{1.00} \pm 0.00 \end{array}$
DA: rotation + colour distortion LT: change rotations + hues	$0.59 \pm 0.01 \\ 1.00 \pm 0.00$

[Von Kügelgen et al., NeurIPS, 2021]

• Challenges: augmentation need to have enough variability, and respect the latent causal structure.

Sample dependency-based identification: Case 2

• Latent time/space structure

Learning latent Lie group structure by manipulation

Keurti et al., ICML 2023

Several other results on sequential/spatial models: Hälvä & Hyvärinen, 2020, and many others...

Relevance for spatio-temporal emulators and data assimilation (Jordi and Andrew's talks)

Learning high-level causal explanations

[Kekić et al. and MB, UAI 2024]

Causal explanations in complex systems

- Experts and decision makers need to get a high-level, simplified representation of complex systems to take decisions.
- This relies on finding "aggregated" indicators to describe the system.
- Those are used to make explicit or implicit causal claims.
- Not obvious these claims are correct!

Low-level representation

Analogy to mechanics

[Kekić et al., UAI, 2024]

Targeted causal model reduction algorithm [Kekić et al., UAI 2024]

Causal consistency principle

• An ML algorithm to learn high-level causes from simulations.

Targeted causal model reduction algorithm [Kekić et al., UAI 2024]

Causal consistency principle

• An ML algorithm to learn high-level causes from simulations.

-> A simplified description of a complex system we can interact with through interventions.

[Kekić et al., UAI 2024]

Example: double well simulator (Euler method)

- Interventions via random forces applied along the trajectory.
- Target phenomenon: Final position of the ball

- The algorithm locates the time range where changes are critical for the outcome to happen.
- Ongoing work: enhance interpretability and scalability.

[Kekić et al., UAI 2024]

Example: double well simulator (Euler method)

- Interventions via random forces applied along the trajectory.
- Target phenomenon: Final position of the ball

- The algorithm locates the time range where changes are critical for the outcome to happen.
- Ongoing work: enhance interpretability and scalability.

Example: double well simulator (Euler method)

- Interventions via random forces applied along the trajectory.
- Target phenomenon: Final position of the ball

- The algorithm locates the time range where changes are critical for the outcome to happen.
- Ongoing work: enhance interpretability and scalability.

Take-home

- Causality is a promising framework to design interpretable AI robust to changes, but also *a philosophy for scientific practice: pay attention to data generating mechanisms.*
- There are **guaranties for causal generative AI**, using diverse inductive biases on function spaces, structure, invariances, multiple environments: can guide the choice of AI model and dataset collection.
- Causal reduction/abstraction of complex models into simpler ones allows human-interpretable explanations and control...

... and a way for scientists to prioritize the aim of understanding reality despite the growing complexity of models and data-science pipelines.

Towards Computational Causal Models (CCM)

Real-world measurements Observations/experiments

աննե

يبلغه والمعالية المراجبين

difference.

Low-level Computational representation

ML coordination

Open questions

- How to optimally merge scientific knowledge (e.g. physics equations and principles) with flexible machine learning:
 - ML tools improve predictive power, but may lose physical consistency (Laure's talk)
 -> need an identifiability theory for hybrid/"grey box" models (Takeishi et al., 2021)
 - How learning high-level causal models, can help generalize better from models to the real world? (Sim2real gap),
- Training of smaller and modular AI systems whose parts can be reused for other tasks.

Thank you!

Bernhard Schölkopf,

Remy Sun, Arash Mehrjou, Luigi Gresele, Julius von Kügelgen, Patrik Reizinger, Jack Brady, Felix Leeb, Hsiao-Ru Pan, Hamza Keurti, Armin Kekić.

Starting a new lab (TU Braunschweig): open positions, collaborations, contact me! © **References**

TÜBINGEN AI CENTER

This work was supported by the German Federal Ministry of Education and Research (BMBF): Tübingen Al Center, FKZ: 01IS18039B

- Besserve et al., Counterfactuals Uncover the Modular Structure of Deep Generative Models, ICLR 2020
- Besserve et al., Learning Soft Interventions in Complex Equilibrium Systems, UAI 2022
- Buchholz et al., Function Classes for Identifiable Nonlinear ICA, NeurIPS 2022
- Gresele*, von Kügelgen* et al., Independent Mechanism Analysis (IMA), NeurIPS 2021
- Hälvä & Hyvärinen, Hidden Markov Nonlinear ICA: Unsupervised Learning from nonstationary Time Series, UAI 2020
- Kekić et al., Trageted Reduction of Causal Models, arXiv 2023
- Keurti et al., Homomorphism AutoEncoder Learning Group Structured Representations from Observed Transitions, ICML 2023
- Reizinger*, Gresele*, Brady* et al., Embrace the Gap, VAEs perform IMA, NeurIPS 2022
- Takeishi et al., Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling, NeurIPS 2021
- von Kügelgen et al., Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style, NeurIPS 2021.