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Second work focuses on how to improve 
this model and make it closer to the Global 
Workspace Theory

First work focuses on semi-supervision and 
how to reduce the amount of multimodal data 
in training
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Semi-supervised Multimodal Representation Learning through a Global Workspace, 
Devillers; Maytié; VanRullen
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raw modalities

pretrained expert models
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unimodal latent vectors
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Set of encoders and decoders to …
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… link unimodal vectors to the Global Workspace
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2 important properties: 
- alignment : align representations from both modalities
- broadcast : capable to translate information from the GW back to each modality
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supervised loss unsupervised loss
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Using different combination of losses → different models
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Radford & al., Learning Transferable Visual 
Models From Natural Language Supervision

● Contrastive Global Workspace ≃ CLIP

● Contrastive Global Workspace → CLIP-like

● Used as a baseline 
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Simple Shapes Factory

vision 

proto-language 

1
(6, 6)
3.21

8
(0, 1, 0.3)

language  
A big light green egg shape 
pointing to the bottom at 

the top left corner

0
(18, 6)
2.89

5
(1, 0.2, 0.2)

A medium red triangle at the 
middle right, pointing to the 

East

(0,1)
3.35

(0.8, 0.7, 0.1)

A red table close to the cones 
at the top pointing to the top 

right

An orange table at the middle 
of the scene pointing to the 

West

3 object type (triangle, egg, diamond) with 4 
attributes (position, rotation, size, color)

Table in a virtual environment with 3 different 
attributes (position, rotation, color)

dataset

modalities
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Unpaired data : 

Paired data : 

A medium red egg 
shape at the top right 
pointing to the East

A big light green egg 
shape pointing to the 
bottom at the top left 

corner
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Influence of the number of paired data on translation and 
alignment performances

Semi-supervised Multimodal Representation Learning through a Global Workspace, 
Devillers & al.
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Downstream task : shape classification

Linear probe using visual or textual 
representation

Zero-shot classification : comparing images representation to 
averaged vectors of each class

Two different setup:
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Downstream task : shape classification

Semi-supervised Multimodal Representation Learning through a Global Workspace, 
Devillers & al.

CLIP-like model (contrastive GW) performs 
always worse than Global Workspace models 
with broadcast in addition to alignment
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A Global Workspace with fusion

Current model: only one modality at a time entering inside the GW

?

Modify the model to encode multiple modalities at the same time → Fusion
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A Global Workspace with fusion
pretrained expert models

unimodal latent vectors
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A Global Workspace with fusion

Global Workspace
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A Global Workspace with fusion

Global Workspace
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A Global Workspace with fusion
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A Global Workspace with fusion

Broadcast lossContrastive loss
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A Global Workspace with fusion

Influence of the number of paired data on 
translation performances

With the fusion, we find the same 
semi-supervision results than the 
model trained with all the losses
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Adding attention to the Global Workspace
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Adding attention to the Global Workspace
Adding an attention system on top to select which modality enters in the GW

Two steps training: 
1- Train the Global Workspace with the two losses



FOCUS sujet 01

Léopold Maytie - CerCo - October 2024 30

Adding attention to the Global Workspace
Adding an attention system on top to select which modality enters in the GW

Two steps training: 
2- Train the attention system on top of the pretrained model
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Adding attention to the Global Workspace

Key Query attention system:
- Keys: coming from unimodal latent K1 = W1.o

v K2 = W2.o
attr

- Query: coming from the Global Workspace vector Q  = Wq.z
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Adding attention to the Global Workspace
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Adding attention to the Global Workspace
Train the attention on shape classification from the Global Workspace with corruption on one side

Add corruption here … … or here
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Adding attention to the Global Workspace

Accuracy = 99%

First: Train shape predictor to classify the shape from the Global Workspace (GW)

Works well without noise
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Adding attention to the Global Workspace

Accuracy = 33%

Randomly apply C to one 
side at a time

C = Fixed random noise vector
k ~ N(0,σ2)

What is the robustness of this model to a fixed noise

Drop in performances
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Adding attention to the Global Workspace

Accuracy = 97%

C = Fixed random noise vector
k ~ N(0,σ2)

Randomly apply C to one 
side at a time

Train attention system to select the modality entering in the GW by maximizing the accuracy 

Good performances
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Adding attention to the Global Workspace

Very noisy attributes Very noisy images

Low attention on the 
attributes side

High attention on the 
visual side

Low attention on the 
visual side

High attention on the 
attributes side

How much the model is paying attention to each modality according to the noise level ?
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Conclusion

Multiple specialized pre-trained models are able to collaborate through the Global 
Workspace by sharing information

Training relies on multiple losses leading to semi-supervised setting and decreasing 
need of multimodal data

Fusion allows to combine multiple modalities entering in the Global Workspace at the 
same time

Attention can select the right combination of input modalities to achieve a goal (e.g. 
noise robustness)



Thank you for your attention
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A Global Workspace with fusion
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A Global Workspace with fusion



FOCUS sujet 01

Léopold Maytie - CerCo - October 2024 43

A Global Workspace with fusion
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A Global Workspace with fusion

The image is a large object pointing towards the 
top-left corner, and it is at the middle right, and it is 
olive green colored, and is looks like a kite

It is a guitar pick, medium size and in pink color, 
pointing to the bottom, at the center right

The image is a tiny triangle pointing towards the 
upper-left corner, it is at the bottom with a beige color

It is a medium size lime green triangle pointing to the 
bottom right at the lower right side of the image

Ground Truth text Associated images Translated images

Translation through 
the Global Workspace
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Adding attention to the Global Workspace

Accuracy = 37%

C ~ N(0,σ1)
k ~ N(0,σ2)

Randomly apply C to one 
side at a time

What is the robustness of this model with attention to a random noise

Very bad
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Adding attention to the Global Workspace
Make a 2 step attention system to adapt the Query to a non random GW
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Adding attention to the Global Workspace
For this, encode inputs through GW using 1st step attention (random Query)



FOCUS sujet 01

Léopold Maytie - CerCo - October 2024 48

Adding attention to the Global Workspace
Generate a new Query from the obtain GW  
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Adding attention to the Global Workspace

Randomly apply C to one 
side at a time

C ~ N(0,σ1)
k ~ N(0,σ2)

To use it in the second pass of the input through the GW

Accuracy = 89% Way better
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Adding attention to the Global Workspace
How much the model is paying attention to each modality according to the noise level ?

Very noisy attributes Very noisy images

Low attention on the 
attributes side

High attention on the 
visual side

Low attention on the 
visual side

High attention on the 
attributes side


