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○ Noise models: PSD (stochastic), phenomenology (transients)

● Inverse problem: Detector data ↦ inferred parameters
○ Significance quantification: Presence of signal
○ Uncertainty quantification: Probability of parameters

● Standard theoretical/computational framework
○ Matched filtering
○ Bayesian inference
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● Everywhere! But…
○ Should clarify how any proposed method relates to standard filtering-based Bayesian 

framework, which is already rigorously founded on well-understood principles
○ Easiest way to do this is by using ML to augment or emulate standard framework
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● The GW problem poses distinctive challenges for ML too
○ Sensitivity: Data dominated by “noise” (instrumental and astrophysical)
○ Generalisability: Data space can have large information volume
○ Precision: Precise models used to make precise inferences

● I’ll discuss two classes of task in the inverse problem
○ Forward-model fitting
○ Posterior estimation



Forward-model fitting

● Let’s focus on generic waveform models for a single class of (binary) source
○ Population distribution fitting [Natalia’s talk]
○ Stochastic signals from populations [Riccardo’s talk]

● Waveforms are often represented as long time/frequency series
○ For LISA, the dimensionality of this representation can be millions

Hughes et al. (+AC) 2021
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● Let’s focus on generic waveform models for a single class of (binary) source
○ Population distribution fitting [Natalia’s talk]
○ Stochastic signals from populations [Riccardo’s talk]

● Waveforms are often represented as long time/frequency series
○ For LISA, the dimensionality of this representation can be millions

● Can we learn this directly?
○ More precisely: We want to fit model output M to waveforms by minimising L2 distance

● Sure, maybe with the help of dimensionality reduction



Forward-model fitting

● First attempted using reduced-order
modelling and neural networks
○ AC, Galley & Vallisneri 2019; Khan & Green 2021
○ Reasonably fast and accurate
○ Another nice perk of using neural networks:

Analytical waveform derivatives for free
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● First attempted using reduced-order
modelling and neural networks
○ AC, Galley & Vallisneri 2019; Khan & Green 2021
○ Reasonably fast and accurate
○ Another nice perk of using neural networks:

Analytical waveform derivatives for free

● On the flip side: Difficult to achieve greater precision in practice
○ Limits from network architecture/capacity, or machine-precision constraints

● One thing that doesn’t help: Output features are completely arbitrary
○ Dimensionality reduction is data-driven, does not leverage knowledge of underlying physics

AC, Galley & Vallisneri 2019



Forward-model fitting

● Feature engineering (on both input and output representations)
○ Essentially, physically motivated alternative parametrisations or intermediate quantities

● Input example: Chirp-time coordinates
○ Preserve the information metric, can facilitate training-set placement

● Output example: Mode decompositions
○ Fit mode amplitudes instead of full waveform [AC et al. 2021; Katz et al. (+AC) 2021]
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Forward-model fitting

● Feature engineering (on both input and output representations)
○ Essentially, physically motivated alternative parametrisations or intermediate quantities

● Input example: Chirp-time coordinates
○ Preserve the information metric, can facilitate training-set placement

● Output example: Mode decompositions
○ Fit mode amplitudes instead of full waveform [AC et al. 2021; Katz et al. (+AC) 2021]

● Feature learning
○ Leverage emergent structure after dimensionality reduction

● Example: Spiral representations
○ Improves accuracy by orders of magnitude [Nousi et al. 2022]

Nousi et al. 2022



Posterior estimation

● Early attempts at using neural networks for GW detection were binary 
classifiers with no or external (frequentist) significance quantification
○ Gebhard et al. 2017; George & Huerta 2018; Gabbard et al. 2018
○ ML might be used for significance quantification, e.g., conformal prediction [Ashton et al. 2024]

Gabbard et al. 2018
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● Early attempts at using neural networks for GW detection were binary 
classifiers with no or external (frequentist) significance quantification
○ Gebhard et al. 2017; George & Huerta 2018; Gabbard et al. 2018
○ ML might be used for significance quantification, e.g., conformal prediction [Ashton et al. 2024]

● Let’s focus on ML for GW inference instead
○ Posterior estimation for uncertainty quantification: Probabilities, expectations, credible sets

● Learning proposal distributions for MCMC
○ E.g., by fitting physical priors or posteriors with normalising flows [Natalia’s talk]
○ Or more general principles, e.g., maximising entropy of proposal [Li, Chen & Sommer 2021]

● Variational inference
○ E.g., SGD variational inference with normalising flows [Vallisneri et al. 2024]



Posterior estimation

● Simulation-based (likelihood-free) inference
○ Essentially: Fit model output M to posterior by

minimising conditional cross-entropy

● Completely front-load cost of inference
○ AC & Vallisneri 2020; Gabbard et al. 2022;

Green, Simpson & Gair 2020
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● Simulation-based (likelihood-free) inference
○ Essentially: Fit model output M to posterior by

minimising conditional cross-entropy

● Completely front-load cost of inference
○ AC & Vallisneri 2020; Gabbard et al. 2022;

Green, Simpson & Gair 2020

● Potential applications
○ Fast sky localisation
○ MCMC proposal distributions
○ Large-scale exploratory studies

● But may be limited in generalisability and
reliability, so not a proxy for the posterior

AC & Vallisneri 2020



Posterior estimation

● ML can be used to produce fast posteriors, but what about reliable ones?
○ Specifically, posteriors that are robust against model misspecification (known and unknown)
○ Dealing with known errors is an easier supervised task

● Posterior correction
○ Essentially fitting and correcting for model/likelihood error
○ If fit is a GP, can marginalise out [Moore et al. (+AC) 2016; AC et al. 2020; Liu, Li & AC 2023]
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● ML can be used to produce fast posteriors, but what about reliable ones?
○ Specifically, posteriors that are robust against model misspecification (known and unknown)
○ Dealing with known errors is an easier supervised task

● Posterior correction
○ Essentially fitting and correcting for model/likelihood error
○ If fit is a GP, can marginalise out [Moore et al. (+AC) 2016; AC et al. 2020; Liu, Li & AC 2023]

● Posterior calibration
○ Learn credible level of erroneous posterior that

gives specified coverage [Mao et al. (+AC) 2024]

● Generalisability is still an issue
with such methods though

Mao et al. (+AC) 2024



Summary

● ML is potentially useful for GW inverse problems, but should always have a 
clear relationship with the standard filtering-based Bayesian framework

● ML can be used for various fitting tasks in forward modelling, and there is 
plenty of room to improve its efficacy using feature engineering/learning

● ML can be used in various ways to augment or emulate the task of Bayesian 
posterior estimation, and to make posteriors robust against model error
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