Beyond Gauss? A more accurate model for LISA astrophysical noise sources

Heterogeneous Data and Large Representation Models in Science Toulouse, FR 2024/10/01

> R. Buscicchio Università di Milano-Bicocca riccardo.buscicchio@unimib.it

The global fit

Separating overlapping Gravitational Waves signals is an **extremely** hard problem (global fit challenge)

5

Can we help AI to help us?

The global fit Scores from a penguin cacophony

The data

Transients signals (i.e. MBHB)

The data

Transients signals (i.e. MBHB)

The data

Stochastic or Deterministic

It is required by the data! It is a modelling choice!

Detection statistics

Or "How to construct a frequentist detector"

- Model the data under both hypotheses (noise, noise+signal).
- Fix the probability of false alarm P_{FA} : i.e. \mathbb{K}
- Maximize the probability of detection P_D at fixed P_{FA} : i.e. $(1 \sqrt{ })$

AI: regressors

- Isolate the dependence on data in "sufficient statistics" **Y(s)** (SNR is just an example)
- Obtain a threshold as a function of $P_{FA}: i.e.$ AI: classifiers
- **Bonus**: the likelihood is $P(s|H_1)$

Null Alternate distribution distribution 0.2 0.1 \mathcal{L} Critical

8

Detection

The simplest: a fixed number in Gaussian noise

$$
\begin{array}{ll} p(d \mid \mathcal{H}_\mathrm{o}) & n = d \sim \mathcal{N}(0, \sigma) \\ p(d \mid \mathcal{H}_\mathrm{1}) & \mu + n = d \sim \mathcal{N}(\mu, \sigma) \end{array}
$$

Detection

The simplest: a fixed number in Gaussian noise

$$
\begin{array}{ll} p(d \mid \mathcal{H}_\mathrm{o}) & n = d \sim \mathcal{N}(0, \sigma) \\ p(d \mid \mathcal{H}_\mathrm{1}) & \mu + n = d \sim \mathcal{N}(\mu, \sigma) \end{array}
$$

Collect d, how do you decide?

Optimal: Neyman Pearson detector

 $\text{SNR}^2 = 4 \int_0^\infty df \frac{|\tilde{h}(f)|^2}{S_h(f)} \ \text{SNR} > \rho_{\text{thres}}(\text{P}_{\text{FA}})$

- Better to minimize the probability of false alarm?
- Better to maximize the probability of detection?
- Can you do both?

Threshold that maximizes the probability of detection at a fixed probability of false alarm.

 $(d) > \rho(P_{FA})$ \hat{s}

Detection

The simplest: a fixed number in Gaussian noise

$$
\begin{array}{ll} p(d \mid \mathcal{H}_\mathrm{o}) & n = d \sim \mathcal{N}(0, \sigma) \\ p(d \mid \mathcal{H}_\mathrm{1}) & \mu + n = d \sim \mathcal{N}(\mu, \sigma) \end{array}
$$

Collect d, how do you decide?

Optimal: Neyman Pearson detector

In GW context:

- Better to minimize the probability of false alarm?
- Better to maximize the probability of detection?
- Can you do both?

Threshold that maximizes the probability of detection at a fixed probability of false alarm.

 $(d) > \rho(P_{FA})$ \hat{s}

 $\text{SNR}^2 = 4 \int_0^\infty df \frac{|\tilde{h}(f)|^2}{S_h(f)} \ \text{SNR} > \rho_{\text{thres}}(\text{P}_{\text{FA}})$

It is optimal to treat it as deterministic. 11

Galactic binaries 104 needles in 10 6 hay straws

 $GLASSv1$ S_{conf} Gaussianty Buscicchio+ (out soon) 2.2 MW Instrument Confusion demod. 2.0 Confusion $10⁵$ Total 1.8 $CDF(\rho | Gaussian)$ $10⁴$ Test statistic ρ 1.6 $count$ Non-Stationary Non-Gaussian Non-Stationary1.4 Source 1.2 $10²$ when you Meles Hother 1.0 Karnesis+ (out soon) 10^{-40} Von-Gaussian 1.00 10^{1} Instrumental noise 0.8 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ -0.75 0.6 $0⁰$ 0.50ϵ $\frac{1}{2}$ 10⁻⁴¹
 $\frac{1}{2}$ 10⁻⁴¹ $S_n + S_{\text{conf.4vr}}$ -0.25 10^{-43} $-1 - 1$ 0.00 10^{-3} Frequencies [Hz] 10^{-43} 10^{-3} 10^{-2} 10^{-4} Frequency [Hz]

Galactic binaries 104 needles in 10 6 hay straws

Bonus: EMRIs ? needles in ? hay straws

Piarulli, Buscicchio, Burke+ (out next week)

Buscicchio+ (out next week)

Blocked Gibbs A viable approach

Gibbs, "the sampler"

Sommese & al Animal Cognition (2022) 25:701–705

$$
X_1^{(t+1)} \Big| \cdot \sim f\left(x_1 | x_2^{(t)}, \dots, x_p^{(t)}\right),
$$

\n
$$
X_2^{(t+1)} \Big| \cdot \sim f\left(x_2 | x_1^{(t+1)}, x_3^{(t)}, \dots, x_p^{(t)}\right),
$$

\n
$$
\vdots
$$

\n
$$
X_{p-1}^{(t+1)} \Big| \cdot \sim f\left(x_{p-1} | x_1^{(t+1)}, x_2^{(t+1)}, \dots, x_{p-2}^{(t+1)}, x_p^{(t)}\right),
$$

\n
$$
X_p^{(t+1)} \Big| \cdot \sim f\left(x_p | x_1^{(t+1)}, x_2^{(t+1)}, \dots, x_{p-1}^{(t+1)}\right),
$$

Likelihoods

for parameter estimation

(1) individual events: a model for the noise $\mathcal{L}(d \mid \mathcal{M}, q, \ldots) = p(n = d - h(\mathcal{M}, q) \mid \mathcal{M}, q, \ldots)$ (2) multiple events: a model for the noise $\mathcal{L}(d \mid \mathcal{M}_1, q_1, \ldots) = p(n = d - \sum_{i=1}^{N} h_i(\mathcal{M}_i, q_i) \mid \mathcal{M}_1, q_1, \ldots)$ (3) stochastic background: a model for two noises (or more) $\mathcal{L}(d \mid S_h, S_n) = p(d \mid S_h, S_n)$

LISA
$$
\mathcal{L}(d \mid \mathcal{M}_1, q_1, \dots, N, S_h, S_n) = p(n = d - \sum_i^N h_i(\mathcal{M}_i, q_i) \mid \mathcal{M}_1, q_1, \dots, \boxed{N}, S_h, S_n)
$$

\n
$$
d = (\mathcal{M}_X, \mathcal{M}_Y, \mathcal{M}_Z)
$$
\n
$$
S
$$
\n
$$

$$

Why does it matter? Source misidentification

Can we help AI to help us? $\mathcal{L}(d | \theta)$ Likelihood-free methods?

18

 $\mathcal{L}(d | \theta)$

How to help AI Another example: quasi-stationarity

Why does it matter? 10⁴ needles in 10⁶ hay straws

Mismodelling biases:

- **Biases in** Ω_{GW}
- **Misinterpret multiple** $\{\Omega_{\text{GW,i}}\}$ **as a single** Ω_{GW}
- **- Individual source PE biases**
- **- Population**

Thanks Questions?

Noise and signal A new degree of freedom

$$
p_n\big[n_i^{\mathcal{A}}\big]=\mathcal{N}_n\exp\left(-\tfrac{1}{2}\mathcal{W}_n(n,n)\right)\quad\text{ Noise model}
$$

 $p_h[h_i] = \gamma_+ \mathcal{N}(h_i; \sigma_+) + \mathcal{N}(h_i; \sigma_-)$ Signal model

Gaussian searches see only σ_h

Data A new degree of freedom

$$
p_s [s_i^{\mathcal{A}}] = \mathcal{N}_n \mathcal{N}_g \int_h \int_g p_h[h] \exp \left(-\frac{1}{2} \mathcal{W}_n(s-h-g, s-h-g) - \frac{1}{2} \mathcal{W}_g(g, g) \right)
$$

= $\mathcal{N}_{n+g} \int_h p_h[h] \exp \left(-\frac{1}{2} \mathcal{W}_{n+g}(s-h, s-h) \right)$
Hard to model (Wick's theorem), easy to sample (see Buscicchio 2209.01400)
Frequency
Frequency
Frequency
Frequency
Frequency
Frequency
Frequency
Required
Bayesian approach

Improved statistics A careful subtraction

Task: remove noise dominated non-zero terms under null-hypothesis

Remark 1: result does not depend on the specific choice of statistics.

Remark 2: result does not depend on GW model. It lives in "detector" indices.

Remark 3: result **is neither** perturbative in non-Gaussianity, **nor** in # of overlapping events (i.e. **neither** Regimbau, Mandic, **nor** Smith&Thrane)