Beyond Gauss? A more accurate model for LISA astrophysical noise sources

Heterogeneous Data and Large Representation Models in Science Toulouse, FR 2024/10/01

> R. Buscicchio Università di Milano-Bicocca riccardo.buscicchio@unimib.it

The global fit

Separating overlapping Gravitational Waves signals is an *extremely* hard problem (global fit challenge)

5

Can we help AI to help us?

The global fit Scores from a penguin cacophony

Hundreds

The data

Transients signals (i.e. MBHB)

The data

Transients signals (i.e. MBHB)

The data

3.990

3.992

3.994

f mHz

3.996

10⁻⁴⁴

6

3.998

Lyttenberg & al 2020

Stochastic or Deterministic

It is required by the data!

It is a modelling choice!

Detection statistics

Or "How to construct a frequentist detector"

- Model the data under both hypotheses (noise, noise+signal).
- Fix the probability of false alarm P_{FA} : i.e.
- Maximize the probability of detection P_D at fixed P_{FA} : i.e. (1-

AI: regressors

- Isolate the dependence on data in "sufficient statistics" **Y(s)** (SNR is just an example)
- Obtain a threshold as a function of P_{FA}: i.e.
- **Bonus:** the likelihood is P(s|H₁)

8

Detection The simplest: a fixed number in <u>Gaussian</u> noise

$$egin{aligned} p(d \mid \mathcal{H}_{ ext{o}}) & n = d \sim \mathcal{N}(0, \sigma) \ p(d \mid \mathcal{H}_{ ext{o}}) & \mu + n = d \sim \mathcal{N}(\mu, \sigma) \end{aligned}$$

Detection The simplest: a fixed number in <u>Gaussian</u> noise

$$egin{aligned} p(d \mid \mathcal{H}_{ ext{o}}) & n = d \sim \mathcal{N}(0, \sigma) \ p(d \mid \mathcal{H}_{ ext{i}}) & \mu + n = d \sim \mathcal{N}(\mu, \sigma) \end{aligned}$$

Collect d, how do you decide?

Optimal: Neyman Pearson detector

In GW context:

- Better to minimize the probability of false alarm? —
- Better to maximize the probability of detection?
- Can you do both?

Threshold that maximizes the → probability of detection at a fixed probability of false alarm.

 $(d) >
ho(P_{FA})$ \hat{s}

$$egin{aligned} \mathrm{SNR}^2 &= 4 \int_0^\infty df rac{| ilde{h}(f)|^2}{S_h(f)} \ \mathrm{SNR} &>
ho_{\mathrm{thres}}(\mathrm{P_{FA}}) \end{aligned}$$

Detection The simplest: a fixed number in <u>Gaussian</u> noise

$$egin{aligned} p(d \mid \mathcal{H}_{ ext{o}}) & n = d \sim \mathcal{N}(0, \sigma) \ p(d \mid \mathcal{H}_{ ext{i}}) & \mu + n = d \sim \mathcal{N}(\mu, \sigma) \end{aligned}$$

Collect d, how do you decide?

Optimal: Neyman Pearson detector

In GW context:

- Better to minimize the probability of false alarm?
- Better to maximize the probability of detection?
- Can you do both?

Threshold that maximizes the
 → probability of detection at a fixed probability of false alarm.

 $(d) >
ho(P_{FA})$ \hat{s}

$$egin{aligned} \mathrm{SNR}^2 &= 4 \int_0^\infty df rac{| ilde{h}(f)|^2}{S_h(f)} \ \mathrm{SNR} &>
ho_{\mathrm{thres}}(\mathrm{P_{FA}}) \end{aligned}$$

It is optimal to treat it as deterministic. 11

Galactic binaries 10⁴ needles in 10⁶ hay straws

 10^{-3}

Frequency [Hz]

Test statistic ρ

 $[{
m zH}/{
m I}]$ 10⁻⁴¹ ISd

 10^{-10}

 10^{-4}

GLASSv1 Sconf Gaussianty Buscicchio+ (out soon) 2.2 Instrument MW Confusion demod. 2.0Confusion $\cdot 10^{5}$ Total 1.8 $CDF(\rho \mid Gaussian)$ $\cdot 10^{4}$ 1.6count Non-Stationary 1.4Source 1.2Mmmmm have would an an and 1.0 10^{-4} **Non-Gaussian** 10^{1} Instrumental noise 0.8 0.6 10^{0}

 $S_n + S_{\text{conf},4\text{vr}}$

 10^{-2}

 10^{-43}

Karnesis+ (out soon) 1.00Data [1/Hz] Data [1/Hz] Data [1/Hz] -0.75 0.50 ¢

> 10^{-3} Frequencies [Hz]

-0.25

0.00

Rosati+ (out soon)

Galactic binaries 10⁴ needles in 10⁶ hay straws

Bonus: EMRIs ? needles in ? hay straws

Piarulli, Buscicchio, Burke+ (out next week)

14

Blocked Gibbs A viable approach

Gibbs, "the sampler"

Sommese & al Animal Cognition (2022) 25:701-705

,

$$\begin{aligned} X_1^{(t+1)} &| \cdot \sim f\left(x_1 | x_2^{(t)}, \dots, x_p^{(t)}\right), \\ X_2^{(t+1)} &| \cdot \sim f\left(x_2 | x_1^{(t+1)}, x_3^{(t)}, \dots, x_p^{(t)}\right), \\ &\vdots \\ X_{p-1}^{(t+1)} &| \cdot \sim f\left(x_{p-1} | x_1^{(t+1)}, x_2^{(t+1)}, \dots, x_{p-2}^{(t+1)}, x_p^{(t)}\right) \\ X_p^{(t+1)} &| \cdot \sim f\left(x_p | x_1^{(t+1)}, x_2^{(t+1)}, \dots, x_{p-1}^{(t+1)}\right), \end{aligned}$$

Likelihoods

for parameter estimation

(1) individual events: a model for the noise $\mathcal{L}(d \mid \mathcal{M}, q, \ldots) = p(n = d - h(\mathcal{M}, q) \mid \mathcal{M}, q, \ldots)$ (2) multiple events: a model for the noise $\mathcal{L}(d \mid \mathcal{M}_1, q_1, \ldots) = p(n = d - \sum_i^N h_i(\mathcal{M}_i, q_i) \mid \mathcal{M}_1, q_1, \ldots)$ (3) stochastic background: a model for two noises (or more) $\mathcal{L}(d \mid S_h, S_n) = p(d \mid S_h, S_n)$

LISA
$$\mathcal{L}(d \mid \mathcal{M}_1, q_1, \dots, N, S_h, S_n) = p(n = d - \sum_i^N h_i(\mathcal{M}_i, q_i) \mid \mathcal{M}_1, q_1, \dots, N, S_h, S_n)$$

 $d = (M_X, M_Y, M_Z)$
sources

anaatra

Why does it matter? Source misidentification

 $\mathcal{L}(d \mid \theta)$ Can we help AI to help us? Likelihood-free methods?

18

 $\mathcal{L}(d \mid \theta)$

How to help AI Another example: quasi-stationarity

Why does it matter? 10⁴ needles in 10⁶ hay straws

Mismodelling biases:

- Biases in Ω_{GW}
- Misinterpret multiple $\{\Omega_{\rm GW,i}\}$ as a single $\Omega_{\rm GW}$
- Individual source PE biases
- Population

Thanks Questions?

Noise and signal A new degree of freedom

 $egin{aligned} & \textbf{Data model} \ & \textbf{S}_i^\mathcal{A} = g_i^\mathcal{A} + h_i^\mathcal{A} + n_i^\mathcal{A} \end{aligned}$

$$p_nig[n_i^\mathcal{A}ig] = \mathcal{N}_n \expig(-rac{1}{2}\mathcal{W}_n(n,n)ig)$$
 Noise model

 $p_h[h_i] = \gamma_+ \mathcal{N}(h_i; \sigma_+) + \mathcal{N}(h_i; \sigma_-)$ Signal model

Gaussian searches see only σ_h

Data A new degree of freedom

$$p_s[s_i^{\mathcal{A}}] = \mathcal{N}_n \mathcal{N}_g \int_h \int_g p_h[h] \exp\left(-\frac{1}{2}\mathcal{W}_n(s-h-g,s-h-g) - \frac{1}{2}\mathcal{W}_g(g,g)
ight)$$

 $= \mathcal{N}_{n+g} \int_h p_h[h] \exp\left(-\frac{1}{2}\mathcal{W}_{n+g}(s-h,s-h)
ight)$
Hard to model (Wick's theorem), easy to sample (see Buscicchio 2209.01400)
Frequentist approach Bayesian approach

Improved statistics A careful subtraction

Task: remove noise dominated non-zero terms under null-hypothesis

Remark 1: result does not depend on the specific choice of statistics.

Remark 2: result does not depend on GW model. It lives in "detector" indices.

Remark 3: result **is neither** perturbative in non-Gaussianity, **nor** in # of overlapping events (i.e. **neither** Regimbau, Mandic, **nor** Smith&Thrane)