Enhanced Ultrasound Localization Microscopy with Spatio-Temporal Deep Learning

V. Pustovalov, D. H. Pham, D. Kouamé

MINDS Team, IRIT, Université Toulouse III Paul Sabatier, France.

October 2024

Outline

Introduction

- Proposed approach
- 3 Numerical Results

Vassili Pustovalov Workshop AISSAI October 2024 2 / 18

Introduction

Vassili Pustovalov Workshop AISSAI October 2024 3/18

Clinical Context

Non-invasive stroke diagnosis:

Avoid MRI and CT-scan constraints.

Surgical management of cerebral gliomas:

Infiltrating gliomas have no clear boundary with healthy tissue. May be located close to or within "functional" brain areas

Figure 1: CT-scan with hemorrhage in the left thalamus.

Figure 2: Diffuse high-grade gliomas.

Experimental procedure

- Contrast enhanced ultrasound:
 Preparation and installation
 Microbubble injection
- Ultrafast Ultrasound Imaging: High pulse repetition frequency Beamforming (DAS)

Figure 3: An US acquisition at a compounded frame rate of 1,000 Hz with 3 tilted plane waves [-5°,0°, +5°].

ULM Pipeline

Proposed approach

Vassili Pustovalov Workshop AISSAI October 2024 7/18

ULM CNNs limitations

- Scarcity of labeled In Vivo data.
- Use of high-resolution grid.

US simulation from MRI

Figure 4: Standard scatterer based ultrasound simulation.

Figure 5: Simulated US images using MRI volume slices.

Workshop AISSAI

October 2024

CAM simulation data

Proposed Method

Output Representation:

Network Loss function:

$$Loss = L_{pos} + L_{loc} \tag{1}$$

$$L_{pos} = \left\| H \circledast Pos - H \circledast \hat{Pos} \right\|_{F}^{2} \tag{2}$$

$$L_{loc} = \frac{1}{2} \left\| X_{\mathcal{E}} - \hat{X}_{\mathcal{E}} \right\|_{F}^{2} + \frac{1}{2} \left\| Y_{\mathcal{E}} - \hat{Y}_{\mathcal{E}} \right\|_{F}^{2}$$

3DML-ResNet Architecture

Proposed 3DML-ResNet:

Vassili Pustovalov Workshop AISSAI October 2024 12 / 18

Numerical Results

Vassili Pustovalov Workshop AISSAI October 2024 13/18

CAM data Rendering

In Silico PALA Results

(c) mSPCN [Liu+20]

Metrics

• PALA In Silico [Hei+22] metrics comparison:

	RS ULM	mSPCN	3DML-ResNet (Ours)
SSIM [%]	84.37	84.14	91.40
RMSE	7.043	9.440	6.616
Jaccard Index [%]	24.15	20.54	47.53

• CAM Data [Che+23] metrics comparison:

	RS ULM	mSPCN	3DML-ResNet (Ours)
SSIM [%]	40.34	42.02	54.43
RMSE	2.009	2.892	1.764
Jaccard Index [%]	8.13	5.80	14.29

In Vivo Rat Brain PALA Results

Thank you!

Questions?

References

- [Hei+22] B. Heiles et al. "Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy". In: Nat. Biomed. Eng. 6 (2022), pp. 605–616. DOI: 10.1038/s41551-021-00824-8.
- [Liu+20] Xin Liu et al. "Deep Learning for Ultrasound Localization Microscopy". In: IEEE TMI 39.10 (2020), pp. 3064–3078. DOI: 10.1109/TMI.2020.2986781.
- [Che+23] Xi Chen et al. "Localization Free Super-Resolution Microbubble Velocimetry Using a Long Short-Term Memory Neural Network". In: IEEE TMI 42.8 (2023), pp. 2374–2385. DOI: 10.1109/TMI.2023.3251197.