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Context: gravitational wave detectors

A network of ground-based gravitational wave
interferometers is currently operating

LIGO: two 4km interferometers in WA and
LA. Operating since September 2015.

Virgo: 3km interferometer near Pisa, Italy
(since 2017). KAGRA: Japanese 4km
underground detector (since 2020).

Pulsar timing arrays are searching for
nanohertz gravitational waves by accurate
timing of millisecond pulsars

Several major collaborations, including
NANOGrav, PPTA, CPTA and the EPTA.




Context: first detection

*  Merging Binary Black Hole, GW150914, at

a distance of ~400 Mpc.

+  Masses: 29Mqs + 36 Mg — 62M

#  Signal fully consistent with
General Relativity.
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Context: LIGO/Virgo observations

LIGO-Virgo-KAGRA Holes LIGO-Virgo-

Solar Masses
O
O
O
O
O
O
O
O
O
O
O
O
@
e —>O)
5O
GO ® ..0.
O_eo—:‘g—»Q

® o e

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern
e S i e o e s s & S L R S S e S L L R S s A v



/
0‘0

¢
%*

logl0 A

Context: PT'A observations

In June 2023, the major PTAs announced a likely
detection of a GW background.

Key signature is a characteristic correlation
pattern between pulsars in different sky locations.

Current data supports this correlation at ~2-40.
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T'he Laser Interferometer Space Antenna
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T'he Laser Interferometer Space Antenna

LISA was officially adopted as an ESA mission at the SPC meeting on January 25th
2024. Launch date: second half of 2035.

> THE EUROPEAN SPACE AGENCY @ eSsa

SCIENCE & EXPLORATION

Capturing the ripples
of spacetime: LISA
gets go ahead

25/01/2024 41968 VIEWS 201 LIKES

ESA / Science & Exploration / Space Science

Today, ESA's Science Programme Committee approved the Laser Interferometer
Space Antenna (LISA) mission, the first scientific endeavour to detect and study

gravitational waves from space.



GW frequency spectrum
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GW sources for LISA (heterogeneous data)

LISA is expected to observe gravitational waves from

Ultra-compact binaries (UCBs): binaries of stellar compact objects in the Milky Way
with ~hour long periods. Dominated by double white dwarf binaries. Total population
of ~107 systems, of which ~104 resolvable and the rest form a foreground. Signals
essentially monochromatic and last entire duration of mission.
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GW sources for LISA (heterogeneous data)

LISA is expected to observe gravitational waves from

Ultra-compact binaries (UCBs): binaries of stellar compact objects in the Milky Way
with ~hour long periods. Dominated by double white dwarf binaries. Total population
of ~107 systems, of which ~104 resolvable and the rest form a foreground. Signals
essentially monochromatic and last entire duration of mission.

Massive black hole binaries (MBHBs ). binaries of black holes with mass ~104 — 107
solar masses form following mergers of their host galaxies. In band for up to a few
months and very loud. Rate uncertain, but could be several tens per year.

Extreme-mass-ratio inspirals (EMRIs). mergers of compact objects formed from stars
with massive black holes in the centres of galaxies. In band for O(yrs) before merger.
Rate unknown, could be as low as ~1 yr-1 or as high as 1000 yr-1.

Stellar-origin-black-hole inspirals (SOBH ). most massive binaries observed by
LIGO/ Virgo would be visible to LISA a few years before merger. O(few) yr-1.

Cosmological sources: phase transitions and other processes in the early Universe can
generate stochastic backgrounds at mHz frequencies. Could also see individual bursts
or a background generated by cosmic strings. Amplitude/rate very uncertain.



LISA data complexity
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Key differences: LISA vs LIGO/Virgo

There are similarities between data analysis for LISA and ground-based detectors
(non-pointable detectors, signals buried in noise), but also several key differences

Signal duration: primary source for LIGO/ Virgo are compact binary mergers,
which last ~O(1s) for BBHs, and up to O(1m) for BNS. LISA sources last between
days (heavy MBHBs) to years (EMRIs) to entire mission (UCBs).
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Signal duration: primary source for LIGO/ Virgo are compact binary mergers,
which last ~O(1s) for BBHs, and up to O(1m) for BNS. LISA sources last between
days (heavy MBHBs) to years (EMRIs) to entire mission (UCBs).

Source density: LIGO/Virgo observe sources at a rate of ~100/year. LISA data will
contain 107 UCBs, O(103) EMRIs and O(102) MBHBs.

Signal identification: LIGO/ Virgo separate search and characterisation. First step
identifies interesting data segments. Second stage is parameter estimation. Cannot
separate these steps in LISA as all data contains signals. Need global fit.

Number of independent detectors: there are three independent ground-based
detectors, with uncorrelated noise. LISA has two separate data channels, but not
really independent. Requires simultaneous noise & signal estimation.

Instrumental artefacts: data from both LIGO/Virgo and LISA contains glitches and
data gaps, but these do not overlap most signals in LIGO/ Virgo.



(W data analysis framework

Data analysis for LISA is typically based on Bayesian inference methods applied to TDI
time series data (d|0)p(6)
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(W data analysis framework

Data analysis for LISA is typically based on Bayesian inference methods applied to TDI

time series data - p(d|0)p(6)
p(0]d) =
p(d)
The noise is assumed to be Gaussian and stationary with a likelihood of the form

ny mNy

p(d|6) o exp |—= (d d—h(é’))] h(0) =3 hi(6:)
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Complexity and computational cost of parameter estimation is driven by

waveform model evaluation: every likelihood evaluation requires the
computation of many waveform models, which are expensive to evaluate.



(W data analysis framework

Data analysis for LISA is typically based on Bayesian inference methods applied to TDI

time series data p(8ld) — p(d|0)p(6)
p(d)
The noise is assumed to be Gaussian and stationary with a liketihood of the form
p(lf) x exp | (d - h(6)ld - h(o))| e 3=, hi
i=1 j=1
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Complexity and computational cost of parameter estimation is driven by

waveform model evaluation: every likelihood evaluation requires the
computation of many waveform models, which are expensive to evaluate.

variable dimensionality: number of sources of each type in data is unknown.



(W data analysis framework

Data analysis for LISA is typically based on Bayesian inference methods applied to TDI

time series data )= p(d|0)p(6)
p(d)
The noise is assumed to be Gaussian and stationary with a likelihood of the form
p(d|f) o exp [—% (d —h(0)|d —h(d ))] h(0) = Zzhi(ei,j)
@ (H)d(Sf) +a(f)b*(f)
b= d
gl f

Complexity and computational cost of parameter estimation is driven by

waveform model evaluation: every likelihood evaluation requires the
computation of many waveform models, which are expensive to evaluate.

variable dimensionality: number of sources of each type in data is unknown.

sampling: we typically represent the complex posterior distribution by a set of
samples. Drawing these requires ~millions of likelihood evaluation.



LISA Data Analysis

e LISA data set not big (few Gb) but the
model is (large representation model). New Data

e To date, successful solutions to the
global fit problem have used classic
stochastic sampling techniques.

e Typical strategy adopted is to
iteratively update the solution for one

source type and then move to the
next. (Gibbs)

e Techniques like reversible jump MCMC
are necessary to handle the problem
of variable dimensionality.

e Employ affine-invariant sampling and
parallel tempering to improve sampling
convergence.


https://lisa-ldc.lal.in2p3.fr/ldc

State of the art: Sangria data set

» LISA data analysis development is being promoted through a series of Data Challenges.
Most sophisticated to date (Sangria): a galaxy of white dwarf binaries plus massive
black hole signals in stationary Gaussian noise.
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Strategy: massive black holes

Massive black holes can be observed with
very high SNR by LISA. Merger typically
stands out above the noise, so signals are

compact in time.

Data analysis uses

search phase: sliding one day window
used to identify mergers and crudely
estimate parameters with stochastic
search algorithms;

characterisation phase: stochastic
sampling of parameters, using initial
estimates and fixing number of sources,
used to obtain parameter posteriors.
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Results: massive black holes

Massive black hole binary parameters determined to high precision and consistent

with values used to generate data.
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Strategy: white dwarf binaries

»  White-dwarf binary signals are compact in frequency. Analysis updates binaries in

frequency sub-bands in parallel. Number uncertain so use reversible jump. Tune
proposals to improve efficiency (see Natalia’s talk).
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Results: white dwarf binaries

+ Recover ~10,000 bright binaries distributed throughout the galaxy.
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Results: white dwarf binaries

*  Assess performance by looking at posteriors for white dwarf binaries known optically.

Hidden
HMCnc ZTF)1539  ZTFJ2243  V407Vul ESCet SDSSJ0651 ZTFJ0538 SDSSJ0935
6.22 mHz 4.82mHz 3.79mHz 351mHz 3.22mHz 2.61mHz 231 mHz 1.68 mHz
> : o 5
- al & |8 © © > 2 p &
o~ b . v @ v - %
NI Y - ] S ) A oc'-
c e o~ M~ © —
)
.5 21.80 mHz 18.19 mHz 18.02 mHz 17.64 mHz 17.07 mHz 16.48 mHz 16.33 mHz 16.07 mHz -+
© o N Q
2 M Si M 8 .:lJ S‘ < z
— — i pd- |
T 3 b A a S P p &
o g o S N 2 Q 0 )
> 7 ~ o o oy
@) n
-
)
3 1390 mHz 12.65mHz 11.03mHz 9.73mHz 8.81mHz 8.31mHz 8.30mHz 7.65mHz
@ ) -
Lt < 3 Te) T vl N 2 """"""""" '?,.
o ¢ o ol ol 2 ¢ o
w 3 ) L & - © | = 0
N ¥ - N A 0 — o 2l
m ~ M - o o =
© -
o) Q

Frequency (mH2z)


https://lisa-ldc.lal.in2p3.fr/ldc

# ....and by comparing to the known injected catalogue.
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TDI A Channel S, (

Overall performance

e In addition to MBH mergers and WD binaries, we fit the unknown noise level in the
instrument, using a (stationary) parametric model.

e Four groups successfully analysed the Sangria data, with comparable levels of
performance.

e Our approach required ~1 week on 4 GPUs.
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Outstanding challenges: EMRIs

e Various sources not yet included,
including stellar-origin black hole
mergers and EMRISs.

e EMRI waveforms show a rich
structure built up from harmonics of
three fundamental frequencies.

e EMRIs generate O(105) cycles in

strong field region close to central
black hole.

e In principle: high precision
measurements of system properties,
including possible environmental
effects and deviations from GR.

e In practice: narrow mode in big
parameter space, many secondaries.
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Outstanding challenges: EMRIs

Example node connections
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Outstanding challenges: glitches

LISA Pathfinder observed

glitches at a rate of 1/day.
Expect glitches in LISA too.

Pathfinder glitches well
described by a single
exponential.

No guarantee LISA glitches
will have the same

morphology.
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Outstanding challenges: glitches

- = Massive black hole binaries posteriors

/{{\ —— Massive black hole binaries posteriors after glitch fitting
ﬂ - = Massive black hole binaries posteriors without fitting for glitches
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Outstanding challenges: gaps

Many possible causes of gaps in the LISA data stream, of both known and unknown
origin. Impact of antenna repointing gaps tested in Spritz data challenge.

Gap type Frequency Duration  Total loss (hr/yr)
Antenna repointing every 2 weeks
PAAM angle adjust 3 per day

TM stray pot. est. 2/yr

TTL coupling est. 4/yr

Unplanned: platform

Unplanned: payload

Unplanned: micro-meteorites
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Outstanding challenges: lack of noise knowledge

Bayesian approaches fit noise model. However, in LISA Pathfinder only 25% of total
noise power was explained by measured noise sources.

Run ending on 27-02-2017 . Native
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Outstanding challenges: lack of noise knowledge

# At leading order, noise estimation and signal estimation are orthogonal, so PE for
individual sources only modified by change in SNR, but problematic for backgrounds.

+ Need flexible models to fit noise uncertainties (see Riccardo’s talk).
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Novel approaches: machine learning

Machine learning is being used in various ways in data analysis for GW detectors

- searches: use classifiers to identify potential signals in data from ground-based
detectors;

- detector characterisation: train networks to learn glitch morphologies and flag
bad data periods;

- parameter estimation: use a neural network to generate samples from the
posterior distribution on the parameters of a source;

- representation of distributions: use neural networks to describe proposal
distributions to use in sampling (see Natalia’s talk).

Key challenges for LISA

compression of input data: need to project input data onto a suitable reduced
representation to facilitate network training;

overlapping sources: data contains an unknown number of overlapping signals;

high precision: precise measurements means large training data sets.



Example: PE for LIGO using DINGO

Train a conditional normalising flow that, when conditioned on observed data, generates

samples from a density, ¢(0|d), that approximates the true posterior, p(6|d). Achieved
by minimising cross-entropy on training set of simulated data.

Various refinements needed to make it work in practice.

Synthetic noise PSD ' strain data time shifts
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Example: PE for LIGO using DINGO

DINGO posteriors for GW events
indistinguishable from standard
sampling, but much faster.

Related techniques have been
applied to LISA measurements of

stochastic GW backgrounds. :;; =
Extension to LISA MBH mergers é’ ::
currently in development.

Possible LISA applications: &
- low latency alerts; ) \‘\: {
- provide initial parameter ‘}:

estimates to global fit; N

- catalogue representation? = ’\
- replace whole global fit? < \:
Simulation-based-inference would \:\\

be a natural approach to tackle
instrumental complexities.
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Summary

Currently operating facilities are observing gravitational waves in the 1-1000Hz
(LIGO/Virgo) and nanohertz (PTA) bands.

LISA will open up the millihertz band, which is expected to be very rich in sources,
including: ultracompact binaries in the Milky Way, massive black hole mergers, extreme-
mass-ratio inspirals, stellar-origin black hole mergers and stochastic backgrounds generated
in the early Universe.

LISA data analysis is a big model problem, requiring simultaneous fitting of a large
number of overlapping sources of many different types.

Progress is being made using classic stochastic sampling methods, augmented with
reversible jump, affine-invariant sampling and parallel tempering.

Several problems still need to be overcome, including simultaneous treatment of
instrumental artefacts (gaps, glitches and uncertain noise) and the search and

characterisation of EMRIs and SOBHs.

Machine learning approaches to LISA data analysis are being explored and have
potential applications to low latency, search and to accelerate the convergence of
existing algorithms.



