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Outline
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Introduction to foundation 

models
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▪ Pre-trained on a certain (large) dataset for a certain task, fine-tuned to perform on a 

different dataset or a different task

▪ Better performance than training the downstream task from scratch
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What are foundation models?



▪ During pretraining, the model learns aspects of the data that are useful for downstream 

tasks

▪ The model has a “head start” compared to a model that needs to train from scratch
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Why does it work?

”Draw some of these animals” ”Which one of these is a horse?”

Aha! I have seen
this before!

Umm, what’s
a horse?

Pretraining Downstream task

Image credits:
DALL-E

themarketingblog.co.uk
drawception.com



▪ Foundation models may be expensive to train, but once pre-trained, downstream tasks 

require less resources

▪ Human resources

▪ Compute resources

▪ Can leverage the pretraining to boost performance on small datasets

▪ Sharing pre-trained models can provide others with access to resources that are 

normally not accessible for them (data, computing resources)
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Benefits

ATLAS and CMS: 18k papers
2024 so far: 696 papers



▪ GPT-3 [1]

▪ Input: text

▪ Pretraining: next token prediction text generation (transformer) 

▪ Finetuning: conversational data + reinforcement learning with human feedback 

→ ChatGPT
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Examples of foundation models: language

[1] Brown et al, Language Models are Few-Shot Learners. arXiv 2005.14165



▪ CLIP [2]

▪ Input: text and images

▪ Pretraining: match images with descriptions (transformer for text, ResNet/ViT for 

images)

▪ Zero shot: image classification
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Examples of foundation models: images

[2] Radford et al, Learning Transferable Visual Models From Natural Language Supervision. arXiv 2103.00020



▪ C5T5 [3]

▪ Input: IUPAC names (standardized molecular naming system) + molecular 

property values

▪ Pretraining goal: predict masked out token (transformer)

▪ Zero-shot: Molecular replacement to change the molecule’s properties
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Examples of foundation models: chemistry

[3] Rothchild et al, C5T5: Controllable Generation of Organic Molecules with Transformers. arXiv 2108.10307

Increasing a molecule’s octanol-water partition coefficient



▪ A transformer in itself is not a foundation model

▪ Foundation models do not necessarily need to be built on transformers
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A note on transformers



▪ Can be useful in itself, or a surrogate task

▪ Example of surrogate tasks: BERT [4] 

▪ Masked language modeling in addition to next sentence prediction 

▪ Masking out tokens allows bidirectional training: sees both previous and future 

words in order to capture the context within a sentence

▪ Next sentence prediction captures context between sentences: does sentence B 

follow sentence A?
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Pretraining

[4] Devlin et al, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 1810.04805

1810.04805



Foundation models become powerful because of scale: data, architecture, compute

▪ Example GPT-3: 300B tokens, 175 billion parameters, estimated thousands of GPUs 

trained over several weeks (~1023 flops)

▪ Parameter scale example Parti (Pathways Autoregressive Text-to-Image model) [5]:
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Scale

[5] Yu et al, Scaling Autoregressive Models for Content-Rich Text-to-Image Generation. arXiv 2206.10789

2206.10789



A foundation model might be able to perform tasks that it was not trained for, and that 

were not anticipated. This behavior comes with scale [6].

Examples for a natural language model only trained to generate text:

▪ Translation

▪ Coding

▪ Basic arithmetic

▪ Sentiment analysis

▪ Few-shot and zero-shot learning
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Emergent properties

[6] Bommasani et al, On the Opportunities and Risks of Foundation Models. arXiv 2108.07258

2206.07682



Can you predict the performance of a larger model, without having to train it? 

Maybe! In the context of language models (autoregressive transformers), it has been shown 
[7] that the cross-entropy loss improves with scale according to simple power laws. 

▪ Dependence on number of parameters 𝑁 if you have unlimited data and unlimited 
compute: 

𝐿 𝑁 =
Nc

N

𝛼N

, 𝛼𝑁~0.076, 𝑁𝐶~8.8 × 1013

▪ Dependence on number of parameters 𝑁 and data 𝐷 given an early stopping criteria for 
compute: 

𝐿 𝑁, 𝐷 =
𝑁𝑐
𝑁

𝛼𝑁
𝛼𝐷

+
𝐷𝑐
𝐷

𝛼𝐷

, 𝛼𝐷~0.095, 𝐷𝑐~5.4 × 1013
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Scale: when to stop?

[7] Kaplan et al, Scaling Laws for Neural Language Models. arXiv 2001.08361



Foundation models 

for HEP
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▪ Use large language models for applictions in physics

▪ ChATLAS: an AI assisant in development for the ATLAS experiment at CERN, to 

better utilize knowledge currently dispersed across a large variety of documents

▪ Teach/adapt large languge models to do maths and physics

▪ Symbolic maths: compute integrals and solve differential equations by treating 

equations and their solutions as a translation task [8]

▪ Number embedding in text: treat numbers as a different entity than text, to 

allow the model to ”understand” numbers [9]

▪ Take inspiration from large languge models and others, build from scratch

▪ The remainder of the talk will focus on this approach
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Approaches to foundation models in physics

[8] Lample and Charton, Deep Learning for Symbolic Mathematics. arXiv 1912.01412
[9] Golkar et al, xVal: A Continuous Number Encoding for Large Language Models. arXiv 2310.02989



Natural language vs high energy physics

Text

▪ Characters, (sub)words, symbols...

▪ Order matters

▪ Meaning builds across many sentences

HEP

▪ (Mostly) continuous numbers

▪ Single numbers

▪ Sets of numbers (vectors, time series)

▪ Can be permutation invariant

▪ Some sets of numbers like 4-vectors carry special 

meaning 

▪ Symmetries might be present
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A particle physics foundation model example

Image credit: J. Birk
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A selection of foundation models for particle jets

Image credit: J. Birk

Jets are important and common objects in particle colliders. They consist of a collimated 

spray of particles (constituents), which originate from the decay of a particle in the detector.

▪ ParticleTransformer (ParT) [10]

▪ Masked particle modeling (MPM) [11]

▪ OmniJet-α [12]

▪ OmniLearn [13]

[10] Qu et al, Particle Transformer for Jet Tagging. arXiv 2202.03772
[11] Golling et al, Towards Self-Supervised High Energy Physics Foundation Models. arXiv 2401.13537
[12] Birk, AH, Kasieczka, OmniJet-α : The first cross-task foundation model for particle physics. arXiv 2403.05618
[13] Mikuni and Nachman, OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks. arXiv 2404.16091
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Comparison of foundation models

Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset
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Comparison of foundation models

Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset

MPM Predict masked out 
tokens (surrogate task)

Transformer Cross-entropy 
masked token 
prediction

Classification (tagging, anomaly 
detection)



Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset

MPM Predict masked out 
tokens (surrogate task)

Transformer Cross-entropy 
masked token 
prediction

Classification (tagging, anomaly 
detection)

OmniJet-α Next token prediction 
(generation)

Transformer Cross-entropy next 
token prediction

Classification (tagging), Generation 
(unconditional)
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Comparison of foundation models
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Comparison of foundation models

Name Pre-training goal Architecture Loss Downstream tasks

ParT Classification Transformer Cross-entropy class 
labels

Classification on different dataset

MPM Predict masked out 
tokens (surrogate task)

Transformer Cross-entropy 
masked token 
prediction

Classification (tagging, anomaly 
detection)

OmniJet-α Next token prediction 
(generation)

Transformer Cross-entropy next 
token prediction

Classification (tagging), Generation 
(unconditional)

OmniLearn Generation + 
classification

Transformer + 
diffusion

Cross-entropy class 
labels + diffusion 
velocity parameter

Classification (tagging: different 
dataset, different experiment, 
different collision type; anomaly 
detection), Generation 
(conditional), Reweighting and 
unfolding



▪ Language models need to turn text into numbers (which is what our models can work 

with), use tokenization: text → sequence of integer tokens

▪ In physics, we already have numbers, but our architecture can force us to tokenize:

▪ Regression loss – no tokens needed, but has so far seemed to be more difficult

▪ Cross-entropy loss – powerful, but need discrete numbers = tokens

▪ Example of a particle jet:

▪ Jet = 𝑝1, 𝑝2, … , 𝑝𝑁

▪ 𝑝𝑖= {𝑝𝑇 , 𝜂, 𝜙, PID, charge, … } → token𝑖

▪ Jets as sequences of integers:

{< start token >, token1, token2, … , tokenN, < stop token >}
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Tokenization for generative tasks

Image credit: J. Birk



▪ Divide each dimension into bins

▪ Sub-optimal coverage

▪ Vocab size becomes ς𝑖∈𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑛𝑏𝑖𝑛𝑠,𝑖

▪ Tokens → Embedding: Linear(𝑛tokens, 𝑑embed)

▪ Embedding → Tokens: Linear(𝑑embed, 𝑛tokens)

▪ Example: 100 000 tokens with embedding dimension 128 → 25.6M parameters
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Binning



Learns an embedding space that gives the best reconstruction; less sensitive to adding 

dimesions

▪ Unconditional tokens: tokenize one constituent at a time, 1:1 correspondence

▪ Conditional tokens: sees all constituents, adapts the tokens → one token can cover 

multiple parts of feature space
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Vector Quantized Variational Autoencoder (VQ-VAE) [14, 15]

Image credit: J. Birk

[14] van den Oord et al, Neural Discrete Representation Learning. arXiv 1711.00937 
[15] Huh et al, Straightening Out the Straight-Through Estimator: Overcoming Optimization Challenges in Vector Quantized Networks. arXiv 2305.08842



▪ VQ-VAE adapts to the shape of the data

▪ Conditional tokenization covers more of the phase space
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Binning vs VQ-VAE

2403.05618



▪ In a new paper on MPM [16], various reconstruction tasks for the pretraining have been 

tested, including tasks not requiring tokenization.

▪ Downstream tasks such as classification, weakly supervised anomaly detection, second 

vertex finding and heavy track identification seem to work well with continous 

pretraining.
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Do we really need tokenization?

[16] Leigh et al, Is Tokenization Needed for Masked Particle Modelling? arXiv 2409.12589

Classification performance, from 2409.12589



▪ In a new paper on MPM [16], various reconstruction tasks for the pretraining have been 

tested, including tasks not requiring tokenization.

▪ Downstream tasks such as classification, weakly supervised anomaly detection, second 

vertex finding and heavy track identification seem to work well with continous 

pretraining.

So, do we need tokens?

▪ For this specific pretraining target and these downstream tasks, it seems to not be 

needed.

▪ For an autoregressive generative model that can learn the number of constituents of a 

jet from context (eg. OmniJet-α), it is currently still needed.
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Do we really need tokenization? It depends on what you want to do!

[16] Leigh et al, Is Tokenization Needed for Masked Particle Modelling? arXiv 2409.12589

Classification performance, from 2409.12589



A closer look at 

OmniJet-α
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▪ OmniJet-α is the first foundation model for particle physics that is able to task-switch:

unsupervised full jet generation and supervised classification

▪ JetClass dataset [17] with 10M jets of each type, originally used in ParT

▪ Tokenizes with VQ-VAE

▪ Uses a transformer for generative pretraining based on the GPT-1 architecture [18] with 

next-token-prediction as training target. 𝑝(𝑥𝑗|𝑥𝑗−1, … , 𝑥1, < start token >)
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A closer look at OmniJet-α

[17] http://dx.doi.org/10.5281/zenodo.6619767
[18] Radford et al, Improving language understanding by generative pre-training. 2018.



During generation, the model generates tokens auto-

regressively:

▪ Model has learned 𝑝(𝑥𝑗|𝑥𝑗−1, … , 𝑥1, < start token >)

▪ Model recieves <start token> and generates until it

generates a <stop token> or the maximum sequence 

length is reached 

Generally good agreement to truth distribution

Constituent 𝑝𝑇 spectrum tail has few events → the limited 

codebook size shows up as bumps
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Generation



The next-token-prediction head is changed to a classification head. We tested three approaches:

▪ From scratch: all weights are initialized from scratch, no pre-training is used

▪ Fine-tuning: load weights of the pre-trained generative model

▪ regular fine-tuning: all weigths can change

▪ backbone fixed: weights of the pre-trained transformer backbone are held fixed
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Transfer learning: classify quark/gluon vs hadronic top jets



▪ Significantly better result when using pre-training

▪ Full fine-tuning slightly better than backbone fixed
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Transfer learning results



▪ Significantly better result when using pre-training

▪ Full fine-tuning slightly better than backbone fixed
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Transfer learning results

Pre-trained model requires 
only 1000 training events to 
reach the same accuracy 
level that the ”from scratch” 
model reaches with 1M 
events.



Outlook
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▪ Downstream tasks

▪ Pretraining

▪ Training goal

▪ Architecture

▪ Loss

▪ Tokenization or not

▪ Unsupervised, self-supervised, supervised...

▪ Input data

▪ Multi-modal? Why and how?

▪ Add physics info? Constraints, symmetries...
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Creating your first foundation model



▪ Foundation models are multi-task and multi-dataset machine learning models that once 

pretrained can be applied to a variety of downstream tasks 

▪ The successful development of foundation models for physics would be a major 

breakthrough, improving performance and saving human and compute resources

▪ Open questions:

▪ What is the most efficient representation of the data?

▪ How to introduce multi-modal data?

▪ Exploring architectures and pretraining strategies

▪ Expanding to further downstream tasks

▪ Investigating effects of scaling
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Conclusion and outlook



39

Backup

Anna Hallin | Foundation models for HEP | AISSAI 2024-09-30



Compared several approaches:

▪ Binning

▪ VQ-VAE

▪ Unconditional

▪ Conditional 

▪ Different codebook sizes (vocab sizes)

We proceed with conditional tokens with codebook 

size 8192.
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Tokenization



The transformer backbone is trained with the next-token-

prediction head.

▪ Causal mask prevents attention to future tokens

▪ n heads = 8, N GPT blocks = 3 results in 6.7M parameters

▪ Model learns to predict the next token, given a sequence 

of previous tokens: 𝑝(𝑥𝑗|𝑥𝑗−1, … , 𝑥1, < 𝐬𝐭𝐚𝐫𝐭 𝐭𝐨𝐤𝐞𝐧 >)
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Backbone training

0

0 153

0 153 5489

0 153 5489 51

0 153 5489 51 8193



▪ JetClass: 10 classes of simulated jets with 10M jets of each type, originally used in ParT

▪ Tokenize all 10 classes at once to evaluate tokenization performance

▪ For pretraining: use 10M q/g jets and 10M t → bqq’ jets. 

▪ No class labels are passed to the model during pretraining.

▪ Use constituent features pT, ηrel, φrel (rel = relative to the jet axis), no jet-level information
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Dataset



▪ Train a multi-class classifier on all 10 classes of JetClass (note: this is not a 

reconstructed vs truth test)

▪ Two types of classifiers are tested: transformer and Deep sets

▪ Train on original JetClass data to obtain an upper limit

▪ Accuracy starts plateauing at a codebook size of 8192
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Quantifying tokenization information loss in OmniJet-α



Generative results, single-jet type training

▪ q/g jets ▪ t → bqq’ jets
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▪ EPiC-FM [19]: flow matching, no tokenization

▪ Ratios compare OmniJet-α and EPiC-FM (kinematics

version) to their respective truths

▪ Both models are doing well

▪ OmniJet-α has a slightly higher discrepancy in the 

tails, except for constituent ηrel and number of 

constituents
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Comparison of generative capabilities, t → bqq’

[19] Birk et al, Flow Matching Beyond Kinematics: Generating Jets with Particle-ID 
and Trajectory Displacement Information. arXiv 2312.00123.
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