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Outline

= |ntroduction to foundation models
= Foundation models in HEP
= Acloserlook at a foundation model for jet physics

=  Qutlook
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Introduction to foundation
models
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What are foundation models?

= Pre-trained on a certain (large) dataset for a certain task, fine-tuned to perform on a
different dataset or a different task

= Better performance than training the downstream task from scratch

Some Downsiream task
large
dataset
| Downstream task

Pretraining

Downstream task |

Downstream task
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Why does it work?

During pretraining, the model learns aspects of the data that are useful for downstream
tasks

The model has a “head start” compared to a model that needs to train from scratch

Ahal T have seen
this beforel!

Pretraining Downstream task

Umm, what's
a horse?

"Draw some of these animals” "Which one of these is a horse?”

Image credits:

DALL-E
themarketingblog.co.uk
UH drawception.com
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Benefits

= Foundation models may be expensive to train, but once pre-trained, downstream tasks
require less resources

= Human resources

= Compute resources
= Can leverage the pretraining to boost performance on small datasets

= Sharing pre-trained models can provide others with access to resources that are
normally not accessible for them (data, computing resources)
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Examples of foundation models: language

= GPT-3[1]
= |nput: text
» Pretraining: next token prediction text generation (transformer)

= Finetuning: conversational data + reinforcement learning with human feedback
- ChatGPT what are you?

@ |am ChatGPT, an Al language model developed by
OpenAl. My purpose is to understand and respond to
text-based inputs, helping answer questions, provide
information, assist with tasks, or just have a
conversation. | use patterns in the data | was trained
on to generate meaningful and relevant responses to
various prompts. What would you like to know or talk

about?

[1] Brown et al, Language Models are Few-Shot Learners. arXiv 2005.14165
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Examples of foundation models: images

= CLIP[2]

Input: text and images

Pretraining: match images with descriptions (transformer for text, ResNet/ViT for
images)

Zero shot: image classification

(1) Contrastive pre-training

Pepper the
aussie pup
T

(2) Create dataset classifier from label text

—

=
-~

.

correct label: meme

coffeelisnithelping

getthejumper cahles
correct rank: 1/2  correct probability: 99.20%

LTy | Ty (LT | oL [Ty
(3) Use for zero-shot prsdlchun
LT | bTs | 1Ty LTy T’ = || =
L LTy | LTy | 1T 13T, |
Ty | LTy | IyTy | . 3 T Image
Encoder LTy | T 1T,
n_ Eneader - : =
Ty [Tz [Ty | o [Ty A photo of

a .

[2] Radford et al, Learning Transferable Visual Models From Natural Language Supervision. arXiv 2103.00020
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Examples of foundation models: chemistry

= C5T5[3]

= Input: IUPAC names (standardized molecular naming system) + molecular
property values

* Pretraining goal: predict masked out token (transformer)

= Zero-shot: Molecular replacement to change the molecule’s properties

5

(1) Original: <med> 2-acetyloxybenzoic acid °°
(2) Input: <high> 2-<s1> benzoic acid OYoﬁ
(3) Prediction: <s1> decyl <s2> N
Generation: 2-decylbenzoic acid /\/\/\/\/\‘@

Increasing a molecule’s octanol-water partition coefficient

[3] Rothchild et al, C5T5: Controllable Generation of Organic Molecules with Transformers. arXiv 2108.10307
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A note on transformers

= Atransformer initself is not a foundation model

= Foundation models do not necessarily need to be built on transformers
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Pretraining

= Can be usefulin itself, or a surrogate task

= Example of surrogate tasks: BERT [4]
= Masked language modeling in addition to next sentence prediction

= Masking out tokens allows bidirectional training: sees both previous and future
words in order to capture the context within a sentence

= Next sentence prediction captures context between sentences: does sentence B
follow sentence A?

[4] Devlin et al, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 1810.04805
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ASP Mask LM Mask LM \
&« &

BERT

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

1810.04805
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Scale

Foundation models become powerful because of scale: data, architecture, compute

= Example GPT-3: 300B tokens, 175 billion parameters, estimated thousands of GPUs
trained over several weeks (~1023 flops)

= Parameter scale example Parti (Pathways Autoregressive Text-to-lmage model) [5]:

Parti-350M Parti-750M Parti-3B Parti-20B

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass
in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!
2206.10789

[5] Yu et al, Scaling Autoregressive Models for Content-Rich Text-to-Image Generation. arXiv 2206.10789
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Emergent properties

A foundation model might be able to perform tasks that it was not trained for, and that
were not anticipated. This behavior comes with scale [6].

Examples for a natural language model only trained to generate text:
= Translation
= Coding

. ) Inout
=  Basic arithmetic npu

Review: This movie sucks. Output

Sentiment: negative.

Language

= Sentiment analysis
model

positive.

Review: | love this movie.
Sentiment:

= Few-shot and zero-shot learning

2206.07682

[6] Bommasani et al, On the Opportunities and Risks of Foundation Models. arXiv 2108.07258
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Scale: when to stop?

Can you predict the performance of a larger model, without having to train it?

Maybe! In the context of language models (autoregressive transformers), it has been shown
[7] that the cross-entropy loss improves with scale according to simple power laws.

= Dependence on number of parameters N if you have unlimited data and unlimited
compute:

an
Ne
L(N) = <W) ) 0{N~0076, NCN88 X 1013

= Dependence on number of parameters N and data D given an early stopping criteria for

compute:
ap

, ap~0.095,  D.~5.4x 1013

an
Nc\*> D

[7] Kaplan et al, Scaling Laws for Neural Language Models. arXiv 2001.08361

L(N,D) =
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Foundation models

for HEP
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Approaches to foundation models in physics

= Use large language models for applictions in physics

= ChATLAS: an Al assisant in development for the ATLAS experiment at CERN, to
better utilize knowledge currently dispersed across a large variety of documents

= Teach/adapt large languge models to do maths and physics

= Symbolic maths: compute integrals and solve differential equations by treating
equations and their solutions as a translation task [8]

= Number embedding in text: treat numbers as a different entity than text, to
allow the model to “understand” numbers [9]

= Take inspiration from large languge models and others, build from scratch

= The remainder of the talk will focus on this approach

[8] Lample and Charton, Deep Learning for Symbolic Mathematics. arXiv 1912.01412
[9] Golkar et al, xVal: A Continuous Number Encoding for Large Language Models. arXiv 2310.02989
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Natural language vs high energy physics

Text

» Characters, (sub)words, symbols...
= Order matters

= Meaning builds across many sentences
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HEP

= (Mostly) continuous numbers
= Single numbers

= Sets of numbers (vectors, time series)
= Can be permutation invariant

= Some sets of numbers like 4-vectors carry special
meaning

= Symmetries might be present

Anna Hallin | Foundation models for HEP | AISSAI 2024-09-30
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A particle physics foundation model example

Reconstructed objects

f? ? =P  Encoding

Detector hits

¥

Backbone

+— Encoding

Image credit: J. Birk
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Event classification

Jet tagging

Clustering

Latent Regression
representation

Generation

Anomaly detection
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A selection of foundation models for particle jets

Jets are important and common objects in particle colliders. They consist of a collimated electron muon

spray of particles (constituents), which originate from the decay of a particle in the detector. hadron

= ParticleTransformer (ParT) [10]
= Masked particle modeling (MPM) [11]
=  Omnilet-a[12]

=  Omnilearn [13]

N Image credit: J. Birk

proton 1 proton 2

[10] Qu et al, Particle Transformer for Jet Tagging. arXiv 2202.03772

[11] Golling et al, Towards Self-Supervised High Energy Physics Foundation Models. arXiv 240113537

[12] Birk, AH, Kasieczka, Omnilet-a : The first cross-task foundation model for particle physics. arXiv 2403.05618

[13] Mikuni and Nachman, OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks. arXiv 2404.16091
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class  Classification on different dataset
labels
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class  Classification on different dataset
labels
MPM Predict masked out Transformer Cross-entropy Classification (tagging, anomaly
tokens (surrogate task) masked token detection)
prediction
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class  Classification on different dataset
labels
MPM Predict masked out Transformer Cross-entropy Classification (tagging, anomaly
tokens (surrogate task) masked token detection)
prediction
Omnilet-a Next token prediction Transformer Cross-entropy next  Classification (tagging), Generation
(generation) token prediction (unconditional)

¥ Universitit Hamburg
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Comparison of foundation models

m Pre-training goal Architecture Downstream tasks

ParT Classification Transformer Cross-entropy class
labels
MPM Predict masked out Transformer Cross-entropy
tokens (surrogate task) masked token
prediction
Omnilet-a Next token prediction Transformer Cross-entropy next
(generation) token prediction
OmniLearn Generation + Transformer + Cross-entropy class
classification diffusion labels + diffusion

velocity parameter
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Classification on different dataset

Classification (tagging, anomaly
detection)

Classification (tagging), Generation
(unconditional)

Classification (tagging: different
dataset, different experiment,
different collision type; anomaly
detection), Generation
(conditional), Reweighting and
unfolding
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Tokenization for generative tasks

= Language models need to turn text into numbers (which is what our models can work
with), use tokenization: text - sequence of integer tokens

= In physics, we already have numbers, but our architecture can force us to tokenize:
= Regression loss — no tokens needed, but has so far seemed to be more difficult

= Cross-entropy loss — powerful, but need discrete numbers = tokens

= Example of a particle jet:
= Jet={py,p2 -, DN}
*  p;={pr,n ¢, PID, charge, ...} — token;

= Jets as sequences of integers:
{< start token >, token,, token,, ..., tokeny, < stop token >}
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hadron

\ . Image credit: J. Birk

proton 1 proton 2

24



Binning

Divide each dimension into bins

Sub-optimal coverage

= Vocab size becomes [[;creqtures Moins,i

= Tokens—> Embedding: Linear (n¢okens dembed)

Embedding — Tokens: Linear (demped, Mtokens)

Example: 100 000 tokens with embedding dimension 128 — 25.6M parameters
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Vector Quantized Variational Autoencoder (VQ-VAE) [14, 15]

Learns an embedding space that gives the best reconstruction; less sensitive to adding
dimesions

= Unconditional tokens: tokenize one constituent at a time, 1:1 correspondence

= Conditional tokens: sees all constituents, adapts the tokens — one token can cover
multiple parts of feature space

Map embedded constituents to their closest
token in embedding space

Input / physical space Encoder Embedding space Embedding space Decoder Qutput / physical space

P

rel

n

Constituents in physical space All available tokens Tokenized constituents

- . Constituents in physical space
Embedded constituents in embedding space

Image credit: J. Birk

[14] van den Oord et al, Neural Discrete Representation Learning. arXiv 1711.00937
[15] Huh et al, Straightening Out the Straight-Through Estimator: Overcoming Optimization Challenges in Vector Quantized Networks. arXiv 2305.08842
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Binning vs VQ-VAE

= VQ-VAE adapts to the shape of the data

= Conditional tokenization covers more of the phase space

=
o

———t il
jmensc o 0 o
—rrr
—mt
jmacs s o o
—_—rE
———r
> 500 o -

.

.

.

ot
w
1

Particle ¢"®
o
S

-0.54

1 9261, binning

Loy
=]

8192, conditional

o
v

Particle ¢
Particle ¢
o
o

|
o
w

o

50

)
100

150 200 50 100 150 200

Particle pr [GeV] Particle pr [GeV] Particle pr [GeV]
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Do we really need tokenization?

= Inanew paper on MPM [16], various reconstruction tasks for the pretraining have been
tested, including tasks not requiring tokenization.

= Downstream tasks such as classification, weakly supervised anomaly detection, second
vertex finding and heavy track identification seem to work well with continous
pretraining.

[16] Leigh et al, Is Tokenization Needed for Masked Particle Modelling? arXiv 2409.12589
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Do we really need tokenization? It depends on what you want to do!

= Inanew paper on MPM [16], various reconstruction tasks for the pretraining have been
tested, including tasks not requiring tokenization.

= Downstream tasks such as classification, weakly supervised anomaly detection, second
vertex finding and heavy track identification seem to work well with continous
pretraining.

So, do we need tokens?

= For this specific pretraining target and these downstream tasks, it seems to not be
needed.

= For an autoregressive generative model that can learn the number of constituents of a
jet from context (eg. Omnilet-a), it is currently still needed.

[16] Leigh et al, Is Tokenization Needed for Masked Particle Modelling? arXiv 2409.12589
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A closer look at

Omnilet-a
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A closer look at Omnilet-a

= Omnilet-ais the first foundation model for particle physics that is able to task-switch:
unsupervised full jet generation and supervised classification

= JetClass dataset [17] with 10M jets of each type, originally used in ParT
= Tokenizes with VQ-VAE

= Uses a transformer for generative pretraining based on the GPT-1 architecture [18] with
next-token-prediction as training target. p(x;|x;_4, ..., x;, < start token >)

Simulated jets
/' Jet tagging
—+% VQVAE |—p| Backbone |—pp Latent
representation \
s Generation

[17] http://dx.doi.org/10.5281/zenodo.6619767
[18] Radford et al, Improving language understanding by generative pre-training. 2018.

-
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Generation

During generation, the model generates tokens auto-

regressively:

= Model has learned p(x;|xj_1, ...

, X1, < start token >)

start-token —p

i Autoregressive next-token generation

'
'
Transimner Next-token
hmkmna prediction head

Jet generation

token 1

R
i -
' P
' o
' token 2 VQ-VAE p2
7 decoder —
K .
token n =
Pn

T

Jef
i

z

etgen = {B1, P20}
= (pr. ', ¢ ll

= Model recieves <start token> and generates until it n;zs
generates a <stop token> orthe maximum sequence ...
length is reached o
Generally good agreement to truth distribution -
Constituent pr spectrum tail has few events — the limited B
codebook size shows up as bumps §1o
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Reconstructed JetClass tokens 8 Reconstructed JetClass tokens 2.0 Reconstructed JetClass tokens
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6
3 ;] 15
2 2
s s
E4 E1o
s S
z z
2 0.5
0.0
100 200 300 4 400 600 800 1000 000 025 050 075 100 125
Jet mass [GeV] Jet pr [GeV] T2
3.51e=2
Reconstructed JetClass tokens 4.0 Reconstructed JetClass tokens Reconstructed JetClass tokens
—— Omnijet-a Y1 — omnijeta 301 — omnijet-a
25
©3.0 3
N 2.0
© ®
E20 Eis
z z
1.0
1.0
0.5
0.0 0.
0 200 400 600 8 =05 0.0 0.5 0 20 40 60 80 100 120
Particle pr [GeV] Particle n' Number of constituents
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Transfer learning: classify quark/gluon vs hadronic top jets

The next-token-prediction head is changed to a classification head. We tested three approaches:
= From scratch: all weights are initialized from scratch, no pre-training is used

= Fine-tuning: load weights of the pre-trained generative model
= regular fine-tuning: all weigths can change

= backbone fixed: weights of the pre-trained transformer backbone are held fixed

Jet classification

P token 1

P2 VO-VAE token 2 Transfo .

’ ;r‘;mn::r Classification head | - Jet type prediction
o token n
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Transfer learning results

= Significantly better result when using pre-training

= Full fine-tuning slightly better than backbone fixed

1.00 - Omnijet-a transfer learning Omnijet-a transfer learning
0.95 - 0.9 -
0.90 - > !
1= c
2 0.85- 3 0.8
0.80 - —e— Fine-tuning < —e— Fine-tuning
Fine-tuning ! Fine-tuning
0.75 "~ (backbone fixed) 0.7 2 “~ (backbone fixed)
| —e— From scratch i —e— From scratch
0.70 1. |
107 103 104 10° 108 102 103 104 10° 108

Number of training jets Number of training jets
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Transfer learning results

= Significantly better result when using pre-training

= Full fine-tuning slightly better than backbone fixed

Omnijet-a transfer learning

1.00 -
0.95 A
0.90 A

3

< 0.85 A
0.80 - —eo— Fine-tuning

Fine-tuning
0.75 - (backbone fixed)
i —e— From scratch
0.70 1, . . ; ;
102 103 104 10° 109

UH
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Accuracy

0.7 1

Omnijet-a transfer learning

~
~eo
~
R

—e— Fine-tuning

Fine-tuning
"~ (backbone fixed)
—e— From scratch

~

103 104 10° 10°

Number of training jets
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T’re—trained model requires
only 1000 training events to
reach the same accuracy
level that the "from scratch”
model reaches with TM

Levents.
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Outlook
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Creating your first foundation model

= Downstream tasks

= Pretraining
= Training goal
= Architecture
* Loss

= Tokenization or not

= Unsupervised, self-supervised, supervised...

= Inputdata
=  Multi-modal? Why and how?

= Add physics info? Constraints, symmetries...
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Conclusion and outlook

= Foundation models are multi-task and multi-dataset machine learning models that once

pretrained can be applied to a variety of downstream tasks

= The successful development of foundation models for physics would be a major
breakthrough, improving performance and saving human and compute resources

= Open questions:
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What is the most efficient representation of the data?
How to introduce multi-modal data?

Exploring architectures and pretraining strategies
Expanding to further downstream tasks

Investigating effects of scaling
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Backup
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Tokenization

Compared several approaches:
= Binning

= VQ-VAE
= Unconditional
= Conditional
= Different codebook sizes (vocab sizes)

We proceed with conditional tokens with codebook
size 8192.
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Backbone training

The transformer backbone is trained with the next-token-

prediction head.

= Causal mask prevents attention to future tokens

* nheads =8, N GPT blocks = 3 results in 6.7M parameters

0

0 153

0 153 5489

0 153 5489 51

0 153 5489 51 8193

= Model learns to predict the next token, given a sequence

of previous tokens: p(x;j|x;_y, ..., X1, < start token >)
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Dataset

= JetClass: 10 classes of simulated jets with 10M jets of each type, originally used in ParT
= Tokenize all 10 classes at once to evaluate tokenization performance

» For pretraining: use 10M q/g jets and 10M t = bqq’ jets.

= Noclass labels are passed to the model during pretraining.

= Use constituent features p;, n', @™ (rel = relative to the jet axis), no jet-level information

UH
S
a8 Universitdt Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Anna Hallin | Foundation models for HEP | AISSAI 2024-09-30

42



Quantifying tokenization information loss in Omnilet-a

= Train a multi-class classifier on all 10 classes of JetClass (note: this is not a

reconstructed vs truth test)

= Two types of classifiers are tested: transformer and Deep sets
= Train on original JetClass data to obtain an upper limit

= Accuracy starts plateauing at a codebook size of 8192
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Generative results, single-jet type training

= g/gjets
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Comparison of generative capabilities, t - bqq’

= EPiC-FM [19]: flow matching, no tokenization

= Ratios compare Omnilet-a and EPiC-FM (kinematics
version) to their respective truths

= Both models are doing well

Omnilet-a has a slightly higher discrepancy in the
tails, except for constituent n'¢' and number of
constituents

[19] Birk et al, Flow Matching Beyond Kinematics: Generating Jets with Particle-1D
and Trajectory Displacement Information. arXiv 2312.00123.
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