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Galaxy observation across the EM spectrum 2 / 28D. Cornu

Image from 
Planck mission 
team/NASA/ESA

M31, Andromeda
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Continuum emission, mainly synchrotron radiation
Induced by the acceleration of charged particles in a magnetic field.
Continuous over a relatively large wavelength window.

Two main types of continuum-emitting galaxies:
1) Star-forming galaxies with emission from the interstellar medium
2) Active Galactic Nuclei (AGN) with emission from relativistic jets

Hercules A, from Timmerman, LoFAR & HST (background)

Radio-Astronomy: radio emission

M51 VLA, NRAO/AUI/NSF; HST composite by B. Saxton
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“21cm” or “HI” emission
Spectral line created by the s1 hyperfine transition (spin-flip) of the 
hydrogen, with a characteristic emission at a wavelength of 21 cm.

HI observations are often hyper-spectral, allowing to 
reconstruct rotation curves of galaxies, and to create 
large HI emission cubes.

3D HI emission cube 
(from SDC2, Hartley et al, 2023)



  

5 / 28D. Cornu Radio-Astronomy: observation
Astronomical radio-emissions are observed with antennas or arrays of various kinds

Large single dish Dish array Multi-pole arrays

Radio Interferometry:
→ Using multiple antennas to emulate a single receiver 
virtual telescope size = maximum distance between antennas.
Allow for a strong increase in resolution and sensitivity at the 
cost of complex computing for image reconstruction.
→ In addition, current radio astronomical facilities 
already produce PB scale databases. 

NenuFARNenuFARAreciboArecibo
ALMAALMA
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Evolution of the universe and astrophysical objects

Construction phase started ! ETA : ~2028

SKA lowSKA low SKA midSKA mid

Big Data
~700 PB / year (stored)

~1.5 millions     500 GB HDD / year

Complex data

  Contrast      Noise       Confusion   Morphology

→ Requires new innovative methods
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             Science Data Challenges (SDCs)

   Simulated dataset that should resemble typical SKA data products
Objective: prepare astronomers, stimulate the creation of new data analysis pipeline

SDC1: Continuum 2D images
 3 integration times x 3 bands 
Each image = 4 GB

From Dec 2018 to April 2019

SDC2: Hyperspectral cube
 of HI emission

Full cube = 1 TB
From Feb 2021 to July 2021
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SDC3: 21 cm emission 
Visibility and Image
Full size ~ 17 TB

EoR Focused, 2023-2025

Source detection and characterization



MINERVA - MachINe lEarning for 
Radioastronomy at obserVatoire de Paris

Officially ended on December 2023

Main research fields
● Cosmic Dawn / EoR
● Transients phenomenon

● Large Radio-survey mining
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From the MINERVA group
External 

collaborators

SKA Science Data 
Challenge 2 (SDC2) 
team using ML methods
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Types of object detection in images
*Image from Stanford Deep 
Learning course cs224
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Deep Learning methods for object detection

Region-based

Regression-based

Methods: R-CNN (Fast and Faster), SPP-net, …

Pros: Best accuracy, ... 

Methods: SSD (Single Shot Detector),
YOLO (You Only Look Once), …

Pros: Very Fast, straightforward architecture,...

Segmentation-based
Methods: U-net, mask R-CNN, ...

Pros: segmentation maps, shallow latent space, ...

D. Cornu 10 / 28



You Only Look Once – YOLO !

pw
ph

Box size 
priors

Additional regression
parameters

p1 p2 p3 p4 p5

The last layer is conv. → boxes « share » weights spatially.
The output is a 3D cube encoding all possible boxes on the output grid.

Originally introduced in Redmon et al. 2015 (V1), 2016 (V2), 2018 (V3) *Images from blog post and Redmon papers
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https://towardsdatascience.com/yolo-v3-object-detection-with-keras-461d2cfccef6


Non Max Suppression

1) Most probable boxes are kept 
using a threshold in objectness

2) NMS takes the most probable box and 
removes overlapping ones based on IoU

D. Cornu 12 / 28



Convolutional Interactive Artificial 
Neural Networks by/for Astrophysicists 

General purpose framework (Keras, PyTorch, ...)
BUT developed for astronomical applications

D. Cornu

github.com/Deyht/CIANNA
Open source – Apache 2 license

x86 Intel/AMD & ARM         Supports modern TC acceleration

Full user
interface Successfully deployed on

● Laptops / Workstation
● Local compute servers
● Mesocenters
● Large computing facilities

Activation   Cost    Association

Custom YOLO implementation
(detailed in Cornu et al. 2024)

● Supplementary parameters per box
● Cascading loss 
● Custom association process

13 / 28
CIANNA dev. team

D. Cornu         G. Sainton

→ Matches YOLO V2 accuracy on classical VOC datasets

https://github.com/Deyht/CIANNA


Application to SKAO SDC1

Example sub-fieldData:
Large continuum images of the same field 
● 3 frequencies: 560 MHz, 1.4 GHz, and 9.2 GHz) 
● 3 integration times: 8, 100, and 1000h

Each image is 32,768 pixel square = 4GB.
A labeled 5% surface fraction is 
provided for ML methods training !

SKA SDC1 took place early 2020. Data from the challenge 
are still freely accessible on the dedicated web-page.

SKA SDC1 summary paper, Bonaldi et al. 2021

D. Cornu

The challenge:
1. Find the sources (RA, Dec)
2. Characterize each source: 
   → (Flux, Bmaj, Bmin, PA, ...)

14 / 28

https://astronomers.skatelescope.org/ska-science-data-challenge-1/


Training data selection functionD. Cornu

● CNN must not be given the task to detect “impossible / invisible” sources!
● Selection based on surface brightness → only ~10% of the labeled catalog remains

15 / 28

*Transformed input scale 
saturated at 50 %



Other difficulties and method modifications

Images are crowded with small sources than can blend
● Smaller architectural reduction factor and adjusted NMS
● The minimum box size is clipped to ~ beam size
● Multiple identical small size priors are used simultaneously
● Change the YOLO association process to be “prediction aware”
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Require extreme positioning accuracy
● The loss function is manually biased for position accuracy
● Change the association metric to a distance aware DIoU



Custom SDC1 model
Architecture:
● 17 conv. layers → ~13 Million parameters (~50MB)

→ +8% in score compared to the classical darknet19 backbone
● 9 box priors ranging from 10 to 32 pixels
● Modified YOLO → For each box 5 additional parameters 

are predicted: Flux, Bmaj, Bmin, cos(PA), sin(PA)
● No class prediction

Training the network using 
● 256x256 cutouts are randomly selected in the training area (54 MB)
● ~ 34000 sources in the selected training catalog
● Data are augmented based on cutout position and flips

Using a single RTX 4090 GPU, training time is ~ 4 hours

Inference:
● The full SKA SDC1 image is split in 512x512 regions 

with an overlap of 32 pixels, → ~4500 images
● Overlapping regions are filtered with a dedicated secondary NMS

The full inference in FP16-TC takes ~8 sec → 130 Mpix/s
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Detection example fields 18 / 28D. Cornu



Detection example fields 19 / 28D. Cornu



Results comparison
 Based on Bonaldi et al. 2021 + submitted catalogs
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Average per-
source score

ML (CNN)

ML (CNN)

Classical
Classical

ML (CNN)
7 other teams, one other ML attempt

After 
challenge 
ending

Original 
leaderboard

→ SDC1 is still a very interesting dataset for source detection pipeline development !
MINERVA team paper, YOLO-CIANNA → Cornu et al. 2024



Data: a 3D cube of 
simulated HI emission
● 20 square deg area
● 950 to 1150 MHz frequency

(30KHz res; z = 0.235–0.495)
● 2000h integration time
● Size of 1 TB !
● 40GB cube for training

The challenge:
1. Find the sources (RA, Dec, Freq)
2. Characterize each source: 
   → Flux, HI size, line width, PA, Inclination

*Challenge data are accessible on the dedicated web-page.
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Compute facilities: teams were 
dispatched on 8 compute facilities to 
prepare the model of data access through 
the future SKA Regional centers

GENCI – Jean Zay supercomputer, GPU partition

https://astronomers.skatelescope.org/ska-science-data-challenge-1/


Selection function difficulties

Selection function based on brightness or SNR are not 
sufficient to fully represent the noisy 3D information.
1st order combined selection :   

● SNR & volume brightness 
● Classical detection (FoF)

“Self learning” (~active learning): 
After a first training, un-selected true sources with high 
predicted objectness can be re-injected in the training sample.

22 / 28D. Cornu



YOLO parameters:
● Generalized to 3D detection
● 23 layers ~ 4 Million parameters 
● 1 single box prior per grid element! (prior 10x10x40)
● Predict 6 additional source parameters
● No class prediction

Training the network using 
● 64x64x256 cubes are randomly selected in training area (40 GB)
● Around 2000 sources in the selected train catalog 
● Data are augmented using shifting and flips

Using a single RTX 4090 GPU
 → Training time up to 12 hours (already good results after 6-8h).

Inference:
● The full SKA SDC2 1 TB cube is split in regions with large overlaps
● Box in overlapping regions are filtered with a dedicated NMS

The full cube prediction takes ~1 hour (vastly dominated by data 
loading time) using a single RTX 4090 (raw 260 ips)

Model modifications for SDC2 23 / 28D. Cornu



Source boxes detection
Brightest source (not typical!)

*averaged over 20 channels in FREQ and 20 pixels in DEC respectively

Typical source that can be detected by the network

True boxesTrue boxes 
vs Predicted boxesPredicted boxes

24 / 28D. Cornu
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ML

ML
ML + SoFiA

SoFiA
SoFiA
SoFiA

Wavelets + ML
SoFiA
SoFiA

ML
Wavelets + ML

ML
Other

Minerva: *YOLO-only score, obtained 
after the challenge end

MINERVA: YOLO and CHADHOC 
combination

FORSKA: U-Net segmentation,
parameters using SOFIA
(Håkansson et al. 2023)

EPFL: Denoising with 3D wavelet filtering, 
identification with jointed likelihood,
Parameters with several CNNs

JLRAT: Region proposal CNN detection, 
classical for parameters
Coin: Multiple CNNs for detection and 
dedicated CNNs for parameters

HIRAXers: Multiple CNNs for both 
detection and for parameters

Key insight from SDC2: better scores when combining pipelines of different nature

Results from
Hartley et al. 2023



  

How to transition to SKA precursors?D. Cornu 26 / 28

ASKAPLOFAR MeerKAT

EuropeEurope AustraliaAustralia South AfricaSouth Africa

Multiple groups are already at work, developing ML pipelines for several instruments

A. Anthore

On going work to generalize 
YOLO-CIANNA to the 

LoTSS and RACS surveys

Exploratory work to generalize 
YOLO-CIANNA to 

WALLABY and LADUMA



  

Challenges of working with real dataD. Cornu 27 / 28

Difficulties : Artifacts / Noise / 
Resolution / Sizes / Morphology

Example on the LoTSS survey (LOFAR)

How to define the training sample?
● Use costly observations on few sources

Pros: Very robust labels   Cons: few examples & imbalance

● Use classical detection methods!
Pros: Easy to use, large samples   Cons: possible bias

● Use simulations (e.g SKA SDCs models)
Pros: infinite examples   Cons: bias, instrument model required

● Use Citizen Science (e.g Radio Galaxy Zoo)
Pros: “Easy”   Cons: bias / errors, limited to human capability

● Combine all of the above!
Pros: Very complete / diverse   Cons: difficult to balance

● Self / Active - Learning or Unsupervised
Train with one sample, then use one of the above to refine « new 
candidates », or try various flavor of unsupervised methods
Pros: limits defined by the method and the data themselves, 
less human bias.



  

Toward multimodal astronomical analysis 28 / 28D. Cornu

Multi-wavelength or multi- 
messenger observations

Instrumental setups Known physical laws

...
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