Galaxy detection with deep learning in radio-astronomical datasets

David Cornu*, P. Salomé, B. Semelin, X. Lu, S. Aicardi, A. Marchal, J. Freundlich, G. Sainton, F. Mertens, F. Combes, C. Tasse

LERMA, Observatoire de Paris, PSL

AISSAI, Toulouse, 2024

D. Cornu **Galaxy observation across the EM spectrum** 2/28 Radio waves Infrared **Ultraviolet** X-rays Gamma rays

Image from Planck mission team/NASA/ESA

Radio **Charged particle** (proton or electron) waves **Magnetic** field **Radio waves**

D. Cornu **Radio-Astronomy: radio emission** 3/28

Continuum emission, mainly synchrotron radiation

Induced by the acceleration of charged particles in a magnetic field. Continuous over a relatively large wavelength window.

Two main types of continuum-emitting galaxies:

1) Star-forming galaxies with emission from the interstellar medium 2) Active Galactic Nuclei (AGN) with emission from relativistic jets

D. Cornu **Radio-Astronomy: radio emission** 4/28

"21cm" or "HI" emission

Spectral line created by the s1 hyperfine transition (spin-flip) of the hydrogen, with a characteristic emission at a wavelength of 21 cm.

HI observations **are often hyper-spectral,** allowing to reconstruct rotation curves of galaxies, and to create **large HI emission cubes**.

3D HI emission cube (from SDC2, Hartley et al, 2023)

D. Cornu **Radio-Astronomy: observation** 5/28

Astronomical radio-emissions are observed with antennas or arrays of various kinds

Large single dish and all builti-pole arrays bish array **Multi-pole arrays**

Radio Interferometry:

→ Using multiple antennas to emulate a single receiver virtual telescope size = maximum distance between antennas.

Allow for a strong increase in resolution and sensitivity at the cost of **complex computing for image reconstruction**.

→ In addition, current radio astronomical facilities already produce PB scale databases.

The Square Kilometer Array D. Cornu (1988) 28 (1989) 28 (19

Future largest radio-telescope

Evolution of the universe and astrophysical objects

Construction phase started ! ETA : ~2028

Big Data

~700 PB / year (stored) ~1.5 millions 500 GB HDD / year

Complex data

 Contrast Noise Confusion Morphology

→ Requires new innovative methods

D. Cornu **SKAO Science Data Challenges (SDCs)** 7/28

 Simulated dataset that should resemble typical SKA data products Objective: prepare astronomers, stimulate the creation of new data analysis pipeline

Dark Ages

Source detection and characterization

MINERVA - MachINe lEarning for Radioastronomy at obserVatoire de Paris

Officially ended on December 2023

Main research fields

- **Cosmic Dawn / EoR**
- **Transients phenomenon**

Large Radio-survey mining:

SKA Science Data Challenge 2 (SDC2) team using ML methods

B. Semelin P. Salomé D.Cornu X. Lu

J. Freundlich

╋

S. Aicardi F. Combes C. Tasse

F. Mertens G. Sainton

D. Cornu **Types of object detection in images** 9/28

*Image from Stanford Deep Learning course cs224

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK **CAT, DOG, DUCK**

D. Cornu **Deep Learning methods for object detection** 10/28

Segmentation-based

Methods: U-net, mask R-CNN, ...

Pros: segmentation maps, shallow latent space, ...

Region-based

Methods: R-CNN (Fast and Faster), SPP-net, …

Pros: Best accuracy, ...

Regression-based

Methods: SSD (Single Shot Detector), **YOLO (You Only Look Once)**, …

Pros: Very Fast, straightforward architecture,...

D. Cornu **11/28 You Only Look Once - YOLO ! 11/28**

*Originally introduced in Redmon et al. 2015 (V1), 2016 (V2), 2018 (V3) *Images from [blog post](https://towardsdatascience.com/yolo-v3-object-detection-with-keras-461d2cfccef6) and Redmon papers*

The last layer is conv. → boxes « share » weights spatially.

The output is a 3D cube encoding all possible boxes on the output grid.

D. Cornu **Non Max Suppression** 12/28

1) Most probable boxes are kept using a threshold in objectness

2) NMS takes the most probable box and removes overlapping ones based on IoU

Convolutional Interactive Artificial Neural Networks by/for Astrophysicists

General purpose framework (Keras, PyTorch, ...) **BUT** developed for **astronomical applications**

x86 Intel/AMD & ARM Supports modern TC acceleration

Full user

interface Successfully deployed on

- **Laptops / Workstation**
- **Local compute servers**
- **Mesocenters**
- **Large computing facilities**

CIANNA dev. team

github.com/Deyht/CIANNA *Open source – Apache 2 license*

Custom YOLO implementation (detailed in Cornu et al. 2024)

Activation Cost Association

- **Supplementary parameters per box**
- **Cascading loss**
- **Custom association process**

→ Matches YOLO V2 accuracy on classical VOC datasets

D. Cornu

Application to SKAO SDC1

Dec (ICRS) [deg]

SKA SDC1 summary paper, Bonaldi et al. 2021

Large continuum images of the same field

- \cdot 3 frequencies: 560 MHz, 1.4 GHz, and 9.2 GHz)
- 3 integration times: 8, 100, and 1000h

Each image is 32,768 pixel square = 4GB.

A labeled 5% surface fraction is provided for ML methods training !

The challenge:

1. Find the sources (RA, Dec) 2. Characterize each source: \rightarrow (Flux, Bmaj, Bmin, PA, ...)

SKA SDC1 took place early 2020. Data from the challenge are still freely accessible on the dedicated [web-page](https://astronomers.skatelescope.org/ska-science-data-challenge-1/).

D. Cornu Training data selection function

- CNN must not be given the task to detect "impossible / invisible" sources!
- Selection based on surface brightness \rightarrow only \sim 10% of the labeled catalog remains

D. Cornu **Other difficulties and method modifications** 16/28

Images are crowded with small sources than can blend

- Smaller architectural reduction factor and adjusted NMS
- The minimum box size is clipped to \sim beam size
- Multiple identical small size priors are used simultaneously
- Change the YOLO association process to be "prediction aware"

Require extreme positioning accuracy

- The loss function is manually biased for position accuracy
- Change the association metric to a distance aware DIoU

$$
DIoU = IoU - \frac{d^2}{c^2}
$$

D. Cornu **Custom SDC1 model** 17/28

Image / Activation Architecture:

- **17 conv. layers** \rightarrow ~13 Million parameters (~50MB)
- \rightarrow +8% in score compared to the classical darknet19 backbone
- **9 box priors** ranging from 10 to 32 pixels
- **Modified YOLO** → For each box **5 additional parameters** are predicted: **Flux, Bmaj, Bmin, cos(PA), sin(PA)**
- No class prediction

Training the network using

- **256x256** cutouts are randomly selected in the training area (54 MB)
	- \sim 34000 sources in the selected training catalog
- Data are augmented based on cutout position and flips

Using a single RTX 4090 GPU, training time is **~ 4 hours**

Inference:

- The full SKA SDC1 image is split in $512x512$ regions with an overlap of 32 pixels, → **~4500 images**
- Overlapping regions are filtered with a dedicated secondary NMS

The full inference in FP16-TC takes ~8 sec → 130 Mpix/s

D. Cornu **Detection example fields** 18/28

D. Cornu **Detection example fields** 19/28

D. Cornu **Results comparison** 20/28

Based on Bonaldi et al. 2021 + submitted catalogs

→ SDC1 is still a very interesting dataset for source detection pipeline development !

MINERVA team paper, YOLO-CIANNA → Cornu et al. 2024

D. Cornu 21/28

SCIENCE DATA CHALLENGE 2

Data: a 3D cube of simulated HI emission

- 20 square deg area
- 950 to 1150 MHz frequency $(30KHz$ res; $z = 0.235 - 0.495$)
- 2000h integration time
- **Size of 1 TB !**
- 40GB cube for training

The challenge:

- 1. Find the sources (RA, Dec, Freq)
- 2. Characterize each source:
	- \rightarrow Flux, HI size, line width, PA, Inclination

Compute facilities: teams were dispatched on 8 compute facilities to prepare the model of data access through the future SKA Regional centers

*Challenge data are accessible on the dedicated [web-page](https://astronomers.skatelescope.org/ska-science-data-challenge-1/).

D. Cornu **Selection function difficulties** 22/28

Selection function based on brightness or SNR are not sufficient to fully represent the noisy 3D information.

1st order combined selection :

- SNR & volume brightness
- \cdot Classical detection (FoF)

"Self learning" (~active learning):

After a first training, **un-selected true sources** with **high predicted objectness** can be re-injected in the training sample. 10°

D. Cornu **Model modifications for SDC2** 23/28

4D YOLO Output

(8x8x16 grid x 14 param)

1 possible box per grid elem \Rightarrow up to 1024 boxes per sub-cube

YOLO parameters:

- **Generalized to 3D detection**
- **23 layers ~ 4 Million parameters**
- \cdot 1 single box prior per grid element! (prior $10x10x40$)
- Predict 6 additional source parameters
- No class prediction

IANNA Training the network using

- **64x64x256** cubes are randomly selected in training area (40 GB)
- Around **2000 sources** in the selected train catalog
- Data are augmented using shifting and flips

Using a single RTX 4090 GPU

→ Training time up to **12 hours** (already good results after 6-8h).

Inference:

- The full SKA SDC2 1 TB cube is split in regions with large overlaps
- Box in overlapping regions are filtered with a dedicated NMS

The full cube prediction takes ~1 hour (vastly dominated by data loading time) **using a single RTX 4090 (raw 260 ips)**

DEC

DEC

True boxes

vs Predicted boxes

Source boxes detection D. Cornu 24 / 28

Brightest source (not typical!)

*averaged over 20 channels in FREQ and 20 pixels in DEC respectively

D. Cornu **LEADERBOARD** 25/28

Results from

Key insight from SDC2: better scores when combining pipelines of different nature

D. Cornu **How to transition to SKA precursors?** 26/28

Multiple groups are already at work, developing ML pipelines for several instruments

On going work to generalize YOLO-CIANNA to the LoTSS and RACS surveys

 \blacksquare

Exploratory work to generalize YOLO-CIANNA to WALLABY and LADUMA

 \blacksquare

п

D. Cornu **Challenges of working with real data** 27/28

Example on the LoTSS survey (LOFAR)

Difficulties : Artifacts / Noise / Resolution / Sizes / Morphology

How to define the training sample?

● **Use costly observations on few sources Pros:** Very robust labels **Cons:** few examples & imbalance

● **Use classical detection methods!**

Pros: Easy to use, large samples **Cons:** possible bias

- **Use simulations (e.g SKA SDCs models) Pros:** infinite examples **Cons:** bias, instrument model required
- **Use Citizen Science (e.g Radio Galaxy Zoo) Pros: "Easy" Cons:** bias / errors, limited to human capability

● **Combine all of the above!**

Pros: Very complete / diverse **Cons:** difficult to balance

Self / Active - Learning or Unsupervised

Train with one sample, then use one of the above to refine « new candidates », or try various flavor of unsupervised methods

Pros: limits defined by the method and the data themselves, less human bias.

D. Cornu **Toward multimodal astronomical analysis** 28 / 28

