Galaxy detection with deep learning in radio-astronomical datasets

David Cornu*, P. Salomé, B. Semelin, X. Lu, S. Aicardi, A. Marchal, J. Freundlich, G. Sainton, F. Mertens, F. Combes, C. Tasse

LERMA, Observatoire de Paris, PSL

AISSAI, Toulouse, 2024

D. Cornu Galaxy observation across the EM spectrum Radio waves Infrared Ultraviolet X-rays Gamma rays

Image from Planck mission team/NASA/ESA

2/28

Radio waves Charged particle (proton or electron) Magnetic field

Radio-Astronomy: radio emission

Continuum emission, mainly synchrotron radiation

Induced by the acceleration of charged particles in a magnetic field. Continuous over a relatively large wavelength window.

Two main types of continuum-emitting galaxies:

Star-forming galaxies with emission from the interstellar medium
 Active Galactic Nuclei (AGN) with emission from relativistic jets

Radio-Astronomy: radio emission

"21cm" or "HI" emission

Spectral line created by the s1 hyperfine transition (spin-flip) of the hydrogen, with a characteristic emission at a wavelength of 21 cm.

HI observations **are often hyper-spectral**, allowing to reconstruct rotation curves of galaxies, and to create **large HI emission cubes**.

3D HI emission cube (from SDC2, Hartley et al, 2023)

Radio-Astronomy: observation

Astronomical radio-emissions are observed with antennas or arrays of various kinds

Large single dish

Dish array

Multi-pole arrays

Radio Interferometry:

→ Using multiple antennas to emulate a single receiver virtual telescope size = maximum distance between antennas.

Allow for a strong increase in resolution and sensitivity at the cost of **complex computing for image reconstruction**.

→ In addition, current radio astronomical facilities already produce PB scale databases.

5/28

D. Cornu The Square Kilometer Array Future largest radio-telescope

Evolution of the universe and astrophysical objects

Construction phase started ! ETA : ~2028

Big Data

~700 PB / year (stored) ~1.5 millions 500 GB HDD / year

Complex data

Noise

Contrast

Confusion M

on Morphology

→ Requires new innovative methods

SKAO Science Data Challenges (SDCs)

Simulated dataset that should resemble typical SKA data products **Objective:** prepare astronomers, stimulate the creation of new data analysis pipeline

Source detection and characterization

From Dec 2018 to April 2019

Full cube = 1 TBFrom Feb 2021 to July 2021

SDC3: 21 cm emission Visibility and Image Full size ~ 17 TB EoR Focused, 2023-2025

Cosmic Dawn

Dark Age

Reionization

11.01 12 49 14 25 16.39

MINERVA - MachINe lEarning for Radioastronomy at obserVatoire de Paris

Officially ended on December 2023

Main research fields

- Cosmic Dawn / EoR
- Transients phenomenon

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Large Radio-survey mining

SKA Science Data Challenge 2 (SDC2) team using ML methods

P. Salomé

C. Tasse

External

J. Freundlich

F. Combes

F. Mertens G. Sainton

Types of object detection in images

*Image from Stanford Deep Learning course cs224

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Deep Learning methods for object detection

Segmentation-based

Methods: U-net, mask R-CNN, ...

Pros: segmentation maps, shallow latent space, ...

Region-based

Methods: R-CNN (Fast and Faster), SPP-net, ...

Pros: Best accuracy, ...

Regression-based

Methods: SSD (Single Shot Detector), YOLO (You Only Look Once), ...

Pros: Very Fast, straightforward architecture,...

10/28

You Only Look Once - YOLO !

Originally introduced in Redmon et al. 2015 (V1), 2016 (V2), 2018 (V3)

*Images from blog post and Redmon papers

The last layer is conv. \rightarrow boxes « share » weights spatially.

The output is a **3D** cube encoding all possible boxes on the output grid.

Non Max Suppression

1) Most probable boxes are kept using a threshold in objectness

2) NMS takes the most probable box and removes overlapping ones based on IoU

Convolutional Interactive Artificial Neural Networks by/for Astrophysicists

General purpose framework (Keras, PyTorch, ...) **BUT** developed for **astronomical applications**

x86 Intel/AMD & ARM

Supports modern TC acceleration

Full user interface

Successfully deployed on

- Laptops / Workstation
- Local compute servers
- Mesocenters
- Large computing facilities

CIANNA dev. team

Custom YOLO implementation

(detailed in Cornu et al. 2024)

Activation Cost Association

- Supplementary parameters per box
- Cascading loss
- Custom association process

→ Matches YOLO V2 accuracy on classical VOC datasets

Application to SKAO SDC1

Dec (ICRS) [deg]

14 / 28

SKA SDC1 summary paper, Bonaldi et al. 2021

Data:

Large continuum images of the same field

- 3 frequencies: 560 MHz, 1.4 GHz, and 9.2 GHz)
- 3 integration times: 8, 100, and 1000h

Each image is 32,768 pixel square = 4GB.

A labeled 5% surface fraction is provided for ML methods training !

The challenge:

Find the sources (RA, Dec)
 Characterize each source:

 → (Flux, Bmaj, Bmin, PA, ...)

SKA SDC1 took place early 2020. Data from the challenge are still freely accessible on the dedicated web-page.

Training data selection function

- CNN must not be given the task to detect "impossible / invisible" sources!
- Selection based on surface brightness \rightarrow only $\sim 10\%$ of the labeled catalog remains

Other difficulties and method modifications

Images are crowded with small sources than can blend

- Smaller architectural reduction factor and adjusted NMS
- The minimum box size is clipped to \sim beam size
- Multiple identical small size priors are used simultaneously
- Change the YOLO association process to be "prediction aware"

Require extreme positioning accuracy

- The loss function is manually biased for position accuracy
- Change the association metric to a distance aware DIoU

$$DIoU = IoU - \frac{d^2}{c^2}$$

Network lavers

Custom SDC1 model

Image / Activation Architecture:

•

- **17 conv. layers** \rightarrow ~13 Million parameters (~50MB)
- \rightarrow +8% in score compared to the classical darknet19 backbone
- 9 box priors ranging from 10 to 32 pixels
- Modified YOLO → For each box 5 additional parameters are predicted: Flux, Bmaj, Bmin, cos(PA), sin(PA)
- No class prediction

Training the network using

- 256x256 cutouts are randomly selected in the training area (54 MB)
- ~ **34000 sources** in the selected training catalog
- Data are augmented based on cutout position and flips

Using a single RTX 4090 GPU, training time is ~ 4 hours

Inference:

- The full SKA SDC1 image is split in 512x512 regions with an overlap of 32 pixels, → ~4500 images
- Overlapping regions are filtered with a dedicated secondary NMS

The full inference in FP16-TC takes $\sim 8 \text{ sec} \rightarrow 130 \text{ Mpix/s}$

D. Cornu

Detection example fields

D. Cornu

Detection example fields

D. Cornu

Results comparison

Based on Bonaldi et al. 2021 + submitted catalogs

→ SDC1 is still a very interesting dataset for source detection pipeline development !

MINERVA team paper, YOLO-CIANNA → Cornu et al. 2024

D, Cornu

SCIENCE DATA CHALLENGE 2

Data: a 3D cube of simulated HI emission

- 20 square deg area
- 950 to 1150 MHz frequency (30 KHz res; z = 0.235 - 0.495)

21/28

- 2000h integration time
- Size of 1 TB ! •
- 40GB cube for training •

The challenge:

- 1. Find the sources (RA, Dec, Freq)
- 2. Characterize each source:
 - \rightarrow Flux, HI size, line width, PA, Inclination

Compute facilities: teams were dispatched on 8 compute facilities to prepare the model of data access through the future SKA Regional centers

*Challenge data are accessible on the dedicated web-page.

Selection function difficulties

Selection function based on brightness or SNR are not sufficient to fully represent the noisy 3D information.

1st order combined selection :

- SNR & volume brightness
- Classical detection (FoF)

"Self learning" (~active learning):

After a first training, **un-selected true sources** with **high predicted objectness** can be re-injected in the training sample. ^{10°}

22/28

Model modifications for SDC2

4D YOLO Output

(8x8x16 grid x 14 param)

Spatial reduction

64x64x256

YOLO parameters:

- Generalized to 3D detection •
- 23 layers ~ 4 Million parameters ٠
- 1 single box prior per grid element! (prior $10 \times 10 \times 40$) ٠
- Predict 6 additional source parameters ٠
- No class prediction ٠

IANNA Training the network using

- 64x64x256 cubes are randomly selected in training area (40 GB) ٠
- Around **2000 sources** in the selected train catalog ٠
- Data are augmented using shifting and flips ٠

Using a single RTX 4090 GPU

 \rightarrow Training time up to **12 hours** (already good results after 6-8h).

Inference:

- The full SKA SDC2 1 TB cube is split in regions with large overlaps ٠
- Box in overlapping regions are filtered with a dedicated NMS ٠

The full cube prediction takes ~1 hour (vastly dominated by data loading time) using a single RTX 4090 (raw 260 ips)

D. Cornu

DEC

DEC

True boxes

vs Predicted boxes

Source boxes detection

Brightest source (not typical!)

*averaged over 20 channels in FREQ and 20 pixels in DEC respectively

0.5

LEADERBOARD

Results from

	Team name	Score	$N_{ m d}$	$N_{ m m}$	Accuracy	Hartley et al. 2023
ML	MINERVA New*	23482	34441	31709	83	<i>Minerva:</i> *YOLO-only score, obtained after the challenge end
ML	MINERVA	23254	32652	30841	81	MINERVA: YOLO and CHADHOC combination
ML + SoFiA	FORSKA-Sweden	22489	33294	31507	77	FORSKA : U-Net segmentation, parameters using SOFIA (Håkansson et al. 2023)
SoFiA	Team SoFiA	16822	24923	23486	78	
SoFiA	NAOC-Tianlai	14416	29151	26020	67	
SoFiA	HI-FRIENDS	13903	21903	20828	72	
Wavelets + ML	EPFL	8515	19116	16742	65	EPFL: Denoising with 3D wavelet filtering, identification with jointed likelihood, Parameters with several CNNs
SoFiA	Spardha	5615	18000	13513	75	
SoFiA	Starmech	2096	27799	17560	70	
ML	JLRAT	1080	2100	1918	66	JLRAT: Region proposal CNN detection, classical for parameters
Wavelets + ML	Coin	-2	29	17	60	Coin: Multiple CNNs for detection and
ML	HIRAXers	-2	2	0	-	aeaicatea CNNs for parameters
Other	SHAO	-471	471	0	-	detection and for parameters

Key insight from SDC2: better scores when combining pipelines of different nature

How to transition to SKA precursors?

Multiple groups are already at work, developing ML pipelines for several instruments

LOFAR

A. Anthore

On going work to generalize YOLO-CIANNA to the LoTSS and RACS surveys

Exploratory work to generalize YOLO-CIANNA to WALLABY and LADUMA

Challenges of working with real data

Example on the LoTSS survey (LOFAR)

Difficulties : Artifacts / Noise / Resolution / Sizes / Morphology

How to define the training sample?

• Use costly observations on few sources Pros: Very robust labels Cons: few examples & imbalance

Use classical detection methods!

Pros: Easy to use, large samples Cons: possible bias

- Use simulations (e.g SKA SDCs models)
 Pros: infinite examples Cons: bias, instrument model required
- Use Citizen Science (e.g Radio Galaxy Zoo)
 Pros: "Easy" Cons: bias / errors, limited to human capability

Combine all of the above!

Pros: Very complete / diverse Cons: difficult to balance

• Self / Active - Learning or Unsupervised

Train with one sample, then use one of the above to refine « new candidates », or try various flavor of unsupervised methods

Pros: limits defined by the method and the data themselves, less human bias.

Toward multimodal astronomical analysis

28/28

