

Contribution ID: 19 Type: Oral presentation

Identifying a piecewise affine signal from its nonlinear observation - application to DNA replication analysis

Wednesday 2 October 2024 09:50 (35 minutes)

An important challenge in DNA replication analysis is to recover a so-called timing profile, that contains important information about the replication dynamics, from nonlinear observations. We show that this challenge can be expressed as a nonlinear sparse coding inverse problem where the unknown timing profile is assumed to be piecewise affine.

We propose a novel formalism and computational approach to harness it. In the noiseless case, we establish sufficient identifiability conditions for the timing profile, and prove that it is the solution of a non-convex optimization problem.

We propose the DNA-inverse optimization method that provably finds the global solution to the nonlinear inverse problem for noisy signals. Besides being more computationally effective than the state-of-the-art optimization, our approach automatically recovers all configurations of the replication dynamics. This is crucial for DNA replication analysis, and was not possible with previous methods

Contribution length

Middle

Primary authors: Mr AUDIT, Benjamin (Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique); LAGE, Clara (ENS de Lyon); Mr ARBONA, Jean-Michel (Univ Lyon, ENS de Lyon, CNRS, LBMC); Ms PUSTELNIK, Nelly (Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique); Mr GRIBONVAL, Rémi (Univ Lyon, ENS de Lyon, Inria, CNRS, UCBL, LIP)

Presenter: LAGE, Clara (ENS de Lyon)