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General framework
> Microscope images are widely used to study the structure and function of cells

> Some characteristics of the replication can be studied by images
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- This work aims to understand parameters of replication such as: position of origins,
local speed, and replication direction
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Important parameters
Main Objective: Better characterize the replication of DNA.
- Position of origins of replication
- Speed and direction of replication
Related application:
- Characterization of replication stress in cancer cells

DNA synthesis at a replication fork moving
to the right
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Important parameters
Main Objective: Better characterize the replication of DNA.
- Position of origins of replication
- Speed and direction of replication
Related application:
- Characterization of replication stress in cancer cells
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DNA replication signal
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DNA Replication signal

- 1d signals generated during the replication process

- Singals combine DNA sequecing and the concentration of a chemical: BrdU
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Dictionary approach

- 1) can be used as an atom that can be translated and dilated
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Dictionary approach

-> The dilatation is able to detect local speed for some signals
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Dictionary approach

> The method does not cover all signals

BrdU concentration

A "'“ ' B WB(t)
(Wi
| wn
i Nn\ | W« |

1 kb/min

10

30

10

50

60 70 80

Chromosome position in kb

min
X

s.t

lz — Dx|13

{x:lixllo < C}

10

7/32



Back to the basis
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Timing profile
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Assumption: Speed of replication is constant between an origin and a terminus
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Change of perspective
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The DNA replication as a nonlinear inverse problem

> Set of equidistant points X = {xq,..., X}
> Timing profile: T = (71, ...,7n) := (7(x1), ..., T(Xn))

- Measurement operator:
vV:R" — RI

T = (w(Tl)v"'v¢(Tn))

Consider the inverse problem:

min ||z — W(7)|3, (P1)
TEPC

where:
Pc:i={7 : |L7|, < C}, LT ={x7, with £ =][1,-2,1].

Pc is the set of piecewise linear vectors with at most C breaks.
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Nonlinear inverse problem
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Challenges

T :=argminl|z —V(7)|5 (P.1)

TEPC

- WV is nonlinear
- W is not injective

Objective: Provide a global solutions to problem (P1)
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Assumption

> The form of the operator W is important

> V(7)) = (¢¥(71), -, ¥ (7n))

0.6

A.1: d 79 > 0 such that:
- Yo := Y|[0,r] is concave
- Y1 1= Plry,00) IS CONVEX

- The convexity or concavity of
1 or 1y is strict.

Intracellular BrdU concentration

0.1

- both g, 11 are injective.

e ————————

As a consequence: #¢(b) = #{T : (1) =b} <2, VbER,
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Alternative formulation

If U is not injective, the definition of P.2 is not intuitive.

min [z = W(7)[; (P1)| €—>> ? (P-2)

TEPC

> Use the property: #1~1(b) <2, Vb€ R, to enumerate the inverse set
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Inverse image

- Inverse image of ¢ for b € R, :
Y7 (b) = g (b) Uty *(b)

> Inverse image of ¥ for d € {0,1}":

v, (z) == ngol(zo) X oo X 7 (2n)

> Define:

K(z) = {d € {0,1)": 43 () # @}

Intracellular BrdU concentration

> Then: \Il‘;l(z) € R", for d € K(z)

() = (%(11), ¥(72), -oors (7)) |
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Taylor approximation

Because of Taylor approximation theorem, for each d € K(z)

Iz —w()IB~ > wi, (Vilz) - 7)°,
=1
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Taylor approximation

Because of Taylor approximation theorem, for each d € K(z)

=B~ S W, (V@) - 1),
=1

where wy ; := wl(zﬁ;l(z;)) € R. We define: |[v|w := /> 71 w?vZ. Then:

Foreach d € {0,1}": ||z — V(7|2 ~ V5" (z) - 7,

Resulting in:

Vgt - 7l5, (P2)

min
{(7,d)ePcx{0,1}"}
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Intuition of (P.2) with a simulated signal

Replication Signal
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Intuition of (P.2) with a simulated signal
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Intuition of (P.2) with a simulated signal
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Intuition of (P.2) with a simulated signal
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- One of the inverse images is close to a piecewise linear behavior
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Intuition of weights wy in a real signal

Replication Signal

0 50

Chromosome position

00 150 200 250 300 350

20/32



Intuition of weights wy in a real signal
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Intuition of weights wy in a real signal
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Intuition of weights wy in a real signal
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- One of the inverse images is close to a piecewise linear behavior 03



Equivalence in noiseless case

{rePc}

#:=argmin |z — V()3 (P.1) <>

(r*,d*) = arg min
{(7.d)ePcxK(2)}

Im —vgi'@l%, (P2)

Theorem. Suppose # or 7* do not have constant parts and its breakpoints are
sufficiently spaced (more then 1.2 kb). Then # = 7*, and d” is such that

Vi) = =+

Proof.

Based on the injectivity of W restricted to the correspondent set in Pc. O
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Equivalence in noiseless case

Theorem. Suppose # or 7* do not have constant parts and its breakpoints are
sufficiently spaced (more then 1.2 kb). Then # = 7%, and d” is such that

\U;}(Z) =7 =7
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Numerical method
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Rewriting (P.2)

Vgt —7l%, (P2)

min
{(7,d)ePcx{0,1}"}

—  (© coordinatewise multiplication)
Wd:d@wlﬁ»(lfd)@Wo

min  3lld o (r =V @), + 311 - d) o (r =Y ()],

st. TER" |L7]o<C
dec{0,1}"

> (¢ regularization) )\ >0

lldo (@ —v @), + 311 - d) o (1 = Vg ()l + AlL7]: (P-3)

T e R,
de{0,1}"
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Solving the regularized problem

min  3lld © (7 =V @)[e, + 311 - d) o (1 = Vg (@)%, + AlLTll (P.3)

s.t. TeR"
dc{0,1}"

> For each d € {0,1}", (P.3) is convex
> For each d € {0,1}", (P.3) is similar to generalized lasso

Proposition. For each d € {0,1}", problem (P.3) is equivalent to its dual
formulation, which is a quadratic optimization problem.
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Constraining the set {0,1}"

> The set {0,1}" is excessively large to be tractable
> We can constraint this set without changing its optimal solution

Noiseless signal d=1 d=0 d

-1, A
LROIAN

0.15 0
0 10 20 30 40 50 0 10 20 30 40 50

chromossome position in kb chromossome position in kb

D = {d : d can be the optimal solution} = {d : d; = dj;1, Vi € I4}
La={i:|gt(z) — 7 H@)| > €}
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Algorithm

Algorithm: DNA-Inverse

Data: Input data: z. Parameters: € > 0.
Initialization:
Compute weights wg. Compute set D. Set: Dpaey =
Main Loop:
for de D do

Step 0: Dp.'lsr. — Dpﬂ.ﬁt o {d}a

Step 1: Solve (P.3), obtaining a solution 7% ;

Step 2:

d* :=argmin F(13), 7% := 7,

deDyan

Output: 7%, d*

where:

Fir) = 3lld o (r ~ VT @), + 511 - d) o (v - V5 @),

2
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Numerical results
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Methods for nonlinear inverse problem

-> Example of a noiseless signal
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Methods for nonlinear inverse problem

> DNA Inverse solution (pink)
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Methods for nonlinear inverse problem

> Other optimization methods can solve the ¢;-regularized (P.1)
min [lz — W(7)|3 +I[L7 1,
TERN

> One of these methods is the Primal-Dual method (Valkonen, 2019):

Glu) = lu—alf, G*(y)= sup (u.y) — G(u).

{Tk'H = prowa”_”l(Tk - Ulwl(Tk)yk)
= PrOXaz(c*—2<w(rk),~>)(yk — oW(7h)),
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Methods for nonlinear inverse problem

- The PDPS provide local solutions that depend on the initial point: 7/,i € {1,2,3,4}
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Execution time

> When compared to PDPS with smart initialization (grey), DNA inverse (pink)

exhibits faster performance
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Results for real data

-> DNA inverse identifies the biological reality behind the signal
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> Timing profile 7* (below, pink), and a signal approximation (above,pink)

- The colored dots are selected by the integer variable d*
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Thanks for your attention!!
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Extension to the noisy case
> We extend wq to be zero in coordinates i € {1, ..., n} such that ¢g4.(z) = 0)
> These coordinates contain less information about the signal position

n o= 4 %

>

Intracellular BrdU concentration
g & R
weight values

o

00 0] WiV
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In the noisy case, consider the optimization problem:

(r*,d*) = arg min ||\Ifgl(z) — T||ﬁ,d (P.2")
{(7,d)ePcx{0,1}"}
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