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DNA replication analysis
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General framework

: Microscope images are widely used to study the structure and function of cells

: Some characteristics of the replication can be studied by images

: This work aims to understand parameters of replication such as: position of origins,
local speed, and replication direction
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Important parameters
Main Objective: Better characterize the replication of DNA.

- Position of origins of replication
- Speed and direction of replication

Related application:

- Characterization of replication stress in cancer cells

4 / 32



Important parameters
Main Objective: Better characterize the replication of DNA.

- Position of origins of replication

- Speed and direction of replication

Related application:

- Characterization of replication stress in cancer cells

4 / 32



DNA replication signal
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DNA Replication signal

: 1d signals generated during the replication process
: Singals combine DNA sequecing and the concentration of a chemical: BrdU
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Dictionary approach

: ψ can be used as an atom that can be translated and dilated

min
x

∥z−Dx∥22
s.t {x : ∥x∥0 ≤ C}
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Dictionary approach

: The dilatation is able to detect local speed for some signals

min
x

∥z−Dx∥22
s.t {x : ∥x∥0 ≤ C}
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Dictionary approach

: The method does not cover all signals

min
x

∥z−Dx∥22
s.t {x : ∥x∥0 ≤ C}
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Back to the basis
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Timing profile

Assumption: Speed of replication is constant between an origin and a terminus
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Change of perspective

τ - Space × Time, Piecewise linear function
ψ - Time × BrdU, concentration function
z - Space × BrdU, Signal: z(x) = ψ(τ(x))
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The DNA replication as a nonlinear inverse problem

: Set of equidistant points X = {x1, ..., xn}
: Timing profile: τ = (τ1, ..., τn) := (τ(x1), ..., τ(xn))
: Measurement operator:

Ψ : Rn −→ Rn
+

τ 7→ (ψ(τ1), ..., ψ(τn))

Consider the inverse problem:

min
τ∈PC

∥z−Ψ(τ )∥22, (P1)

where:
PC := {τ : ∥Lτ∥0 ≤ C}, Lτ = ℓ ∗ τ , with ℓ = [1,−2, 1].

PC is the set of piecewise linear vectors with at most C breaks.
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Nonlinear inverse problem
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Challenges

τ̂ := argmin
τ∈PC

∥z−Ψ(τ )∥22 (P.1)

- Ψ is nonlinear
- Ψ is not injective

Objective: Provide a global solutions to problem (P1)
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Assumption

: The form of the operator Ψ is important
: Ψ(τ ) = (ψ(τ1), ..., ψ(τn))

A.1 : ∃ τ0 > 0 such that:

- ψ0 := ψ|[0,τ0] is concave
- ψ1 := ψ|[τ0,∞) is convex

- The convexity or concavity of
ψ0 or ψ1 is strict.

- both ψ0, ψ1 are injective.

As a consequence: #ψ−1(b) = #{τ : ψ(τ ) = b} ≤ 2, ∀b ∈ R+
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Alternative formulation

If Ψ is not injective, the definition of P.2 is not intuitive.

: Use the property: #ψ−1(b) ≤ 2, ∀b ∈ R+ to enumerate the inverse set
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Inverse image

: Inverse image of ψ for b ∈ R+ :

ψ−1(b) = ψ−1
0 (b) ∪ ψ−1

1 (b)

: Inverse image of Ψ for d ∈ {0, 1}n :

Ψ−1
d (z) := ψ−1

d0
(z0)× ...× ψ−1

dn
(zn)

: Define:

K(z) =
{
d ∈ {0, 1}n : ψ−1

di
(zi ) ̸= ∅

}
: Then: Ψ−1

d (z) ∈ Rn, for d ∈ K(z)

Ψ(τ ) = (ψ(τ1), ψ(τ2), ...., ψ(τn))
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Taylor approximation

Because of Taylor approximation theorem, for each d ∈ K(z)

∥z−Ψ(τ )∥22 ≈
n∑

i=1

w2
d ,i

(
Ψ−1

d (z)− τ
)2
i
,
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Taylor approximation

Because of Taylor approximation theorem, for each d ∈ K(z)

∥z−Ψ(τ )∥22 ≈
n∑

i=1

w2
d ,i

(
Ψ−1

d (z)− τ
)2
i
,

where wd ,i := ψ
′
(ψ−1

di
(zi )) ∈ R. We define: ∥v∥w :=

√∑n
i=1 w

2
i v

2
i . Then:

For each d ∈ {0, 1}n : ∥z−Ψ(τ )∥22 ≈ ∥Ψ−1
d (z)− τ∥2wd

Resulting in:

min
{(τ ,d )∈PC×{0,1}n}

∥Ψ−1
d (z)− τ∥2wd

(P.2)
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Intuition of (P.2) with a simulated signal
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Intuition of (P.2) with a simulated signal
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Intuition of (P.2) with a simulated signal

19 / 32



Intuition of (P.2) with a simulated signal

: One of the inverse images is close to a piecewise linear behavior
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Intuition of weights wd in a real signal
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Intuition of weights wd in a real signal
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Intuition of weights wd in a real signal
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Intuition of weights wd in a real signal

: One of the inverse images is close to a piecewise linear behavior
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Equivalence in noiseless case

Theorem. Suppose τ̂ or τ ∗ do not have constant parts and its breakpoints are
sufficiently spaced (more then 1.2 kb). Then τ̂ = τ ∗, and d ∗ is such that
Ψ−1

d∗ (z) = τ ∗ = τ̂

Proof.
Based on the injectivity of Ψ restricted to the correspondent set in PC .
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Numerical method
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Rewriting (P.2’)
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Solving the regularized problem

min
τ ,d

1
2∥d ⊙ (τ −Ψ−1

1 (z))∥2w1
+ 1

2∥(1− d )⊙ (τ −Ψ−1
0 (z))∥2w0

+ λ∥Lτ∥1 (P.3)

s.t. τ ∈ Rn,
d ∈ {0, 1}n

: For each d ∈ {0, 1}n, (P.3) is convex
: For each d ∈ {0, 1}n, (P.3) is similar to generalized lasso

Proposition. For each d ∈ {0, 1}n, problem (P.3) is equivalent to its dual
formulation, which is a quadratic optimization problem.
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Constraining the set {0, 1}n
: The set {0, 1}n is excessively large to be tractable
: We can constraint this set without changing its optimal solution

D = {d : d can be the optimal solution} = {d : di = di+1, ∀i ∈ IA}

IA = {i : |ψ−1
0 (zi )− ψ−1

1 (zi )| > ϵ}
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Algorithm

where:

F (τ ) :=
1

2
∥d ⊙ (τ −Ψ−1

1 (z))∥2w1
+

1

2
∥(1− d )⊙ (τ −Ψ−1

0 (z))∥2w0
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Numerical results

28 / 32



Methods for nonlinear inverse problem

: Example of a noiseless signal
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Methods for nonlinear inverse problem

: DNA Inverse solution (pink)
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Methods for nonlinear inverse problem

: Other optimization methods can solve the ℓ1-regularized (P.1)

min
τ∈Rn

∥z−Ψ(τ )∥22 + γ∥Lτ∥1,

: One of these methods is the Primal-Dual method (Valkonen, 2019):

G (u) = ∥u − z∥22, G ∗(y) = sup
u∈Rn

⟨u, y⟩ − G (u).

{
τ k+1 = proxσ1γ∥·∥1(τ

k − σ1Ψ
′(τ k)yk)

yk+1 = proxσ2(G∗−2⟨Ψ(τ k ),·⟩)(yk − σ2Ψ(τ k)),
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Methods for nonlinear inverse problem

: The PDPS provide local solutions that depend on the initial point: τ i , i ∈ {1, 2, 3, 4}
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Execution time
: When compared to PDPS with smart initialization (grey), DNA inverse (pink)
exhibits faster performance
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Results for real data

: DNA inverse identifies the biological reality behind the signal

: Timing profile τ ∗ (below, pink), and a signal approximation (above,pink)
: The colored dots are selected by the integer variable d ∗
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Thanks for your attention!!
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Extension to the noisy case
: We extend wd to be zero in coordinates i ∈ {1, ..., n} such that ψdi (z) = ∅
: These coordinates contain less information about the signal position

In the noisy case, consider the optimization problem:

(τ ∗,d ∗) := argmin
{(τ ,d )∈PC×{0,1}n}

∥Ψ−1
d (z)− τ∥2wd

(P.2’)
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