

# Identifying a piecewise affine signal from its nonlinear observation - application to DNA replication analysis

Clara Lage<sup>1</sup>, Rémi Gribonval<sup>2</sup>, Nelly Pustelnik<sup>1</sup>, Benjamin Audit<sup>1</sup> and Jean-Michel Arbona<sup>1,3</sup> <sup>1</sup> ENS de Lyon, CNRS; <sup>2</sup> LIP, ENS de Lyon; <sup>3</sup> LBMC, Univ de Lyon Toulouse, October 2024 DNA replication analysis

## General framework

- $\rightarrow$  Microscope images are widely used to study the structure and function of cells
- $\rightarrow$  Some characteristics of the replication can be studied by images



early replication

 $\rightarrow$  This work aims to understand parameters of replication such as: position of origins, local speed, and replication direction

#### Important parameters

Main Objective: Better characterize the replication of DNA.

- Position of origins of replication
- Speed and direction of replication

#### **Related application:**

- Characterization of replication stress in cancer cells



DNA synthesis at a replication fork moving to the right

#### Important parameters

Main Objective: Better characterize the replication of DNA.

- Position of origins of replication
- Speed and direction of replication

#### **Related application:**

- Characterization of replication stress in cancer cells



DNA synthesis at a replication fork moving to the right





DNA replication signal

## **DNA** Replication signal

- $\rightarrow$  1d signals generated during the replication process
- $\boldsymbol{\rightarrow}$  Singals combine DNA sequecing and the concentration of a chemical: BrdU



## Dictionary approach

 $\textbf{\ } \textbf{\ } \psi$  can be used as an atom that can be translated and dilated



## Dictionary approach

 $\rightarrow$  The dilatation is able to detect local speed for some signals



## Dictionary approach

→ The method does not cover all signals



#### Back to the basis



## Timing profile



Assumption: Speed of replication is constant between an origin and a terminus

## Change of perspective



 $\tau$  - Space × Time, Piecewise linear function  $\psi$  - Time × BrdU, concentration function z - Space × BrdU, Signal:  $z(x) = \psi(\tau(x))$ 

## The DNA replication as a nonlinear inverse problem

- → Set of equidistant points  $X = \{x_1, ..., x_n\}$
- → Timing profile:  $\boldsymbol{\tau} = (\tau_1, ..., \tau_n) := (\tau(x_1), ..., \tau(x_n))$

U

→ Measurement operator:

$$egin{array}{rcl} \mathcal{Y}:\mathbb{R}^n&\longrightarrow&\mathbb{R}^n_+\ oldsymbol{ au}&\mapsto&(\psi( au_1),...,\psi( au_n)) \end{array}$$

Consider the inverse problem:

$$\min_{\boldsymbol{\tau}\in\mathcal{P}_{\mathcal{C}}} \|\mathbf{z}-\Psi(\boldsymbol{\tau})\|_{2}^{2}, \tag{P1}$$

where:

$$\mathcal{P}_{\mathcal{C}} := \{ \boldsymbol{\tau} \ : \ \| \mathrm{L} \boldsymbol{\tau} \|_0 \leq \mathcal{C} \}, \ \ \mathrm{L} \boldsymbol{\tau} = \ell \ast \boldsymbol{\tau}, \text{ with } \ell = [1, -2, 1].$$

 $\mathcal{P}_{\mathcal{C}}$  is the set of piecewise linear vectors with at most  $\mathcal{C}$  breaks.

Nonlinear inverse problem

Challenges

$$\widehat{oldsymbol{ au}} := rgmin_{oldsymbol{ au}\in\mathcal{P}_{\mathcal{C}}} \| \mathbf{z} - \Psi(oldsymbol{ au}) \|_2^2$$
 (P.1)

- $\Psi$  is nonlinear
- $\Psi$  is not injective

## Objective: Provide a global solutions to problem (P1)

## Assumption

→ The form of the operator  $\Psi$  is important →  $\Psi(\tau) = (\psi(\tau_1), ..., \psi(\tau_n))$ 

- $\textbf{A.1}: \ \exists \ \tau_0 > 0 \ \text{such that:}$ 
  - $\psi_0:=\psi|_{[0, au_0]}$  is concave
  - $\psi_1:=\psi|_{[ au_0,\infty)}$  is convex
  - The convexity or concavity of  $\psi_0$  or  $\psi_1$  is strict.
  - both  $\psi_0, \, \psi_1$  are injective.



As a consequence:  $\#\psi^{-1}(b) = \#\{\boldsymbol{\tau} : \psi(\boldsymbol{\tau}) = b\} \le 2, \ \forall b \in \mathbb{R}_+$ 

#### Alternative formulation

If  $\Psi$  is not injective, the definition of **P.2** is not intuitive.

$$\min_{\tau \in \mathcal{P}_{\mathcal{C}}} \|\mathbf{z} - \Psi(\tau)\|_{2}^{2} \quad (P.1) \quad \longleftrightarrow \quad ? \quad (P.2)$$

→ Use the property:  $\#\psi^{-1}(b) \le 2$ ,  $\forall b \in \mathbb{R}_+$  to enumerate the inverse set

#### Inverse image



→ Inverse image of  $\psi$  for  $b \in \mathbb{R}_+$  :

$$\psi^{-1}(b) = \psi_0^{-1}(b) \cup \psi_1^{-1}(b)$$

→ Inverse image of  $\Psi$  for  $\boldsymbol{d} \in \{0,1\}^n$  :

$$\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) := \psi_{d_0}^{-1}(\mathbf{z}_0) \times \ldots \times \psi_{d_n}^{-1}(\mathbf{z}_n)$$

→ Define:

$$\mathcal{K}(\mathbf{z}) = \left\{ oldsymbol{d} \in \{0,1\}^n : \psi_{d_i}^{-1}(\mathrm{z}_i) 
eq arnothing
ight\}$$

→ Then: 
$$\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) \in \mathbb{R}^n$$
, for  $\boldsymbol{d} \in \mathcal{K}(\mathbf{z})$ 

$$\Psi(\boldsymbol{\tau}) = (\psi(\tau_1), \psi(\tau_2), \dots, \psi(\tau_n))$$

## Taylor approximation



Because of Taylor approximation theorem, for each  $d \in \mathcal{K}(\mathbf{z})$ 

$$\|\mathbf{z} - \Psi(\boldsymbol{\tau})\|_2^2 \approx \sum_{i=1}^n w_{\boldsymbol{d},i}^2 \left(\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) - \boldsymbol{\tau}\right)_i^2,$$

#### Taylor approximation

Because of Taylor approximation theorem, for each  $\pmb{d} \in \mathcal{K}(\mathbf{z})$ 

$$\|\mathbf{z}-\Psi(\boldsymbol{ au})\|_2^2 pprox \sum_{i=1}^n w_{\boldsymbol{d},i}^2 \left(\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z})-\boldsymbol{ au}
ight)_i^2,$$

where  $w_{d,i} := \psi'(\psi_{d_i}^{-1}(\mathbf{z}_i)) \in \mathbb{R}$ . We define:  $\|\mathbf{v}\|_{\mathbf{w}} := \sqrt{\sum_{i=1}^n w_i^2 v_i^2}$ . Then:

For each 
$$\boldsymbol{d} \in \{0,1\}^n$$
:  $\|\mathbf{z} - \Psi(\boldsymbol{\tau})\|_2^2 \approx \|\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) - \boldsymbol{\tau}\|_{\boldsymbol{w}_{\boldsymbol{d}}}^2$ 

Resulting in:

$$\frac{\min_{\{(\tau, \boldsymbol{d}) \in \mathcal{P}_{\mathcal{C}} \times \{0, 1\}^n\}} \|\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) - \tau\|_{w_{\boldsymbol{d}}}^2 \quad (\mathsf{P.2})$$









 $\rightarrow$  One of the inverse images is close to a piecewise linear behavior



![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_1.jpeg)

 $\rightarrow$  One of the inverse images is close to a piecewise linear behavior

#### Equivalence in noiseless case

Theorem. Suppose  $\hat{\tau}$  or  $\tau^*$  do not have constant parts and its breakpoints are sufficiently spaced (more then 1.2 kb). Then  $\hat{\tau} = \tau^*$ , and  $d^*$  is such that  $\Psi_{d^*}^{-1}(z) = \tau^* = \hat{\tau}$ 

#### Proof.

Based on the injectivity of  $\Psi$  restricted to the correspondent set in  $\mathcal{P}_{\mathcal{C}}$ .

#### Equivalence in noiseless case

Theorem. Suppose  $\hat{\tau}$  or  $\tau^*$  do not have constant parts and its breakpoints are sufficiently spaced (more then 1.2 kb). Then  $\hat{\tau} = \tau^*$ , and  $d^*$  is such that  $\Psi_{d^*}^{-1}(z) = \tau^* = \hat{\tau}$ 

![](_page_30_Figure_2.jpeg)

Numerical method

## Rewriting (P.2')

$$\begin{split} \min_{\substack{\{(\tau,d)\in\mathcal{P}_{C}\times\{0,1\}^{n}\}}} \|\Psi_{d}^{-1}(\mathbf{z})-\tau\|_{w_{d}}^{2} \quad (\mathbf{P.2}) \\ & = \underbrace{(\odot \text{ coordinatewise multiplication})}_{\boldsymbol{w}_{d}=\boldsymbol{d}\odot\boldsymbol{w}_{1}+(1-\boldsymbol{d})\odot\boldsymbol{w}_{0}} \\ \\ \min_{\substack{\tau,d\\ \tau,d\\ s.t.}} \quad \frac{1}{2}\|\boldsymbol{d}\odot(\tau-\Psi_{1}^{-1}(\mathbf{z}))\|_{\boldsymbol{w}_{1}}^{2}+\frac{1}{2}\|(1-\boldsymbol{d})\odot(\tau-\Psi_{0}^{-1}(\mathbf{z}))\|_{\boldsymbol{w}_{0}}^{2} \\ \text{s.t.} \quad \tau\in\mathbb{R}^{n}, \ \|\mathrm{L}\tau\|_{0}\leq C \\ \boldsymbol{d}\in\{0,1\}^{n} \end{split}$$

pprox ( $\ell_1$  regularization)  $\lambda>0$ 

$$\min_{\boldsymbol{\tau},\boldsymbol{d}} \quad \frac{1}{2} \|\boldsymbol{d} \odot (\boldsymbol{\tau} - \Psi_{1}^{-1}(\mathbf{z}))\|_{\boldsymbol{w}_{1}}^{2} + \frac{1}{2} \|(\boldsymbol{1} - \boldsymbol{d}) \odot (\boldsymbol{\tau} - \Psi_{0}^{-1}(\mathbf{z}))\|_{\boldsymbol{w}_{0}}^{2} + \lambda \|\mathbf{L}\boldsymbol{\tau}\|_{1} \quad (\mathbf{P.3})$$
  
s.t.  $\boldsymbol{\tau} \in \mathbb{R}^{n},$   
 $\boldsymbol{d} \in \{0,1\}^{n}$ 

## Solving the regularized problem

$$\begin{array}{ll} \min_{\boldsymbol{\tau}, \boldsymbol{d}} & \frac{1}{2} \| \boldsymbol{d} \odot (\boldsymbol{\tau} - \Psi_{1}^{-1}(\mathbf{z})) \|_{\boldsymbol{w}_{1}}^{2} + \frac{1}{2} \| (\mathbf{1} - \boldsymbol{d}) \odot (\boldsymbol{\tau} - \Psi_{0}^{-1}(\mathbf{z})) \|_{\boldsymbol{w}_{0}}^{2} + \lambda \| \mathbf{L} \boldsymbol{\tau} \|_{1} \quad \text{(P.3)} \\ \text{s.t.} & \boldsymbol{\tau} \in \mathbb{R}^{n}, \\ & \boldsymbol{d} \in \{0, 1\}^{n} \end{array}$$

- → For each  $d \in \{0,1\}^n$ , (P.3) is convex
- → For each  $d \in \{0,1\}^n$ , (P.3) is similar to generalized lasso

Proposition. For each  $d \in \{0,1\}^n$ , problem (P.3) is equivalent to its dual formulation, which is a *quadratic optimization problem*.

## Constraining the set $\{0,1\}^n$

- → The set  $\{0,1\}^n$  is excessively large to be tractable
- $\rightarrow$  We can constraint this set without changing its optimal solution

![](_page_34_Figure_3.jpeg)

 $\mathcal{D} = \{ \boldsymbol{d} : \boldsymbol{d} \text{ can be the optimal solution} \} = \{ \boldsymbol{d} : \boldsymbol{d}_i = \boldsymbol{d}_{i+1}, \forall i \in I_{\mathcal{A}} \}$  $I_{\mathcal{A}} = \{ i : |\psi_0^{-1}(z_i) - \psi_1^{-1}(z_i)| > \epsilon \}$ 

## Algorithm

Algorithm: DNA-Inverse

```
 \begin{array}{l} \textbf{Data: Input data: z. Parameters: } \epsilon > 0. \\ \textbf{Initialization:} \\ \textbf{Compute weights } w_d. \textbf{ Compute set } \mathcal{D}. \textbf{ Set: } \mathcal{D}_{\text{past}} = \emptyset; \\ \textbf{Main Loop:} \\ \textbf{for } d \in \mathcal{D} \textbf{ do} \\ \textbf{Step 0: } \mathcal{D}_{\text{past}} \leftarrow \mathcal{D}_{\text{past}} \cup \{d\}; \\ \textbf{Step 1: Solve (P.3), obtaining a solution } \tau^*_d; \\ \textbf{Step 2:} \\ d^* := \operatorname*{arg\,min}_{d \in \mathcal{D}_{\text{past}}} F(\tau^*_d), \ \tau^* := \tau^*_{d^*}, \\ \textbf{Output: } \tau^*, d^* \end{array}
```

where:

$$F(\tau) := \frac{1}{2} \| \boldsymbol{d} \odot (\tau - \Psi_{1}^{-1}(\mathbf{z})) \|_{\boldsymbol{w}_{1}}^{2} + \frac{1}{2} \| (\boldsymbol{1} - \boldsymbol{d}) \odot (\tau - \Psi_{0}^{-1}(\mathbf{z})) \|_{\boldsymbol{w}_{0}}^{2}$$

Numerical results

 $\rightarrow$  Example of a noiseless signal

![](_page_37_Figure_2.jpeg)

→ DNA Inverse solution (pink)

![](_page_38_Figure_2.jpeg)

→ Other optimization methods can solve the  $\ell_1$ -regularized (P.1)

$$\min_{\boldsymbol{\tau}\in\mathbb{R}^n} \|\mathbf{z}-\Psi(\boldsymbol{\tau})\|_2^2 + \gamma \|\mathbf{L}\boldsymbol{\tau}\|_1,$$

 $\rightarrow$  One of these methods is the Primal-Dual method (Valkonen, 2019):

$$G(\boldsymbol{u}) = \|\boldsymbol{u} - \mathbf{z}\|_{2}^{2}, \quad G^{*}(\boldsymbol{y}) = \sup_{\boldsymbol{u} \in \mathbb{R}^{n}} \langle \boldsymbol{u}, \boldsymbol{y} \rangle - G(\boldsymbol{u}).$$

$$\begin{cases} \boldsymbol{\tau}^{k+1} = \operatorname{prox}_{\sigma_{1}\gamma\|\cdot\|_{1}}(\boldsymbol{\tau}^{k} - \sigma_{1}\Psi'(\boldsymbol{\tau}^{k})\boldsymbol{y}^{k}) \\ \boldsymbol{y}^{k+1} = \operatorname{prox}_{\sigma_{2}(G^{*}-2\langle \Psi(\boldsymbol{\tau}^{k}), \cdot \rangle)}(\boldsymbol{y}^{k} - \sigma_{2}\Psi(\boldsymbol{\tau}^{k})), \end{cases}$$

→ The PDPS provide local solutions that depend on the initial point:  $au^i, i \in \{1, 2, 3, 4\}$ 

![](_page_40_Figure_2.jpeg)

## Execution time

 $\rightarrow$  When compared to PDPS with smart initialization (grey), DNA inverse (pink) exhibits faster performance

![](_page_41_Figure_2.jpeg)

## Results for real data

 $\rightarrow$  DNA inverse identifies the biological reality behind the signal

![](_page_42_Figure_2.jpeg)

→ Timing profile *τ*\* (below, pink), and a signal approximation (above,pink)
 → The colored dots are selected by the integer variable *d*\*

## Thanks for your attention!!

## References

 Valkonen, T. et al (2019). "Acceleration and Global Convergence of a First-Order Primal-Dual Method for Nonconvex Problems". In: SIAM Journal on Optimization 29.1, pp. 933–963. DOI: 10.1137/18M1170194. URL: https://doi.org/10.1137/18M1170194.

## Extension to the noisy case

- → We extend  $w_d$  to be zero in coordinates  $i \in \{1, ..., n\}$  such that  $\psi_{d_i}(\mathbf{z}) = \emptyset$
- $\boldsymbol{\rightarrow}$  These coordinates contain less information about the signal position

![](_page_45_Figure_3.jpeg)

In the noisy case, consider the optimization problem:

$$(\boldsymbol{\tau}^*, \boldsymbol{d}^*) := \argmin_{\{(\boldsymbol{\tau}, \boldsymbol{d}) \in \mathcal{P}_C \times \{0, 1\}^n\}} \| \Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) - \boldsymbol{\tau} \|_{w_{\boldsymbol{d}}}^2 \quad (\mathsf{P.2'})$$