

Identifying a piecewise affine signal from its nonlinear observation - application to DNA replication analysis

Clara Lage¹, Rémi Gribonval², Nelly Pustelnik¹, Benjamin Audit¹ and Jean-Michel Arbona^{1,3} 1 ENS de Lyon, CNRS; 2 LIP, ENS de Lyon; 3 LBMC, Univ de Lyon Toulouse, October 2024

[DNA replication analysis](#page-1-0)

General framework

- \rightarrow Microscope images are widely used to study the structure and function of cells
- \rightarrow Some characteristics of the replication can be studied by images

 \rightarrow This work aims to understand parameters of replication such as: position of origins, local speed, and replication direction

Important parameters

Main Objective: Better characterize the replication of DNA.

- Position of origins of replication
- Speed and direction of replication

Related application:

- Characterization of replication stress in cancer cells

DNA synthesis at a replication fork moving to the right

Important parameters

Main Objective: Better characterize the replication of DNA.

- Position of origins of replication
- Speed and direction of replication

Related application:

- Characterization of replication stress in cancer cells

DNA synthesis at a replication fork moving to the right

[DNA replication signal](#page-5-0)

DNA Replication signal

- \rightarrow 1d signals generated during the replication process
- \rightarrow Singals combine DNA sequecing and the concentration of a chemical: BrdU

Dictionary approach

 \rightarrow ψ can be used as an atom that can be translated and dilated

Dictionary approach

 \rightarrow The dilatation is able to detect local speed for some signals

Dictionary approach

 \rightarrow The method does not cover all signals

Back to the basis

Timing profile

Assumption: Speed of replication is constant between an origin and a terminus

Change of perspective

 τ - Space \times Time, Piecewise linear function ψ - Time \times BrdU, concentration function z - Space \times BrdU, Signal: $z(x) = \psi(\tau(x))$

The DNA replication as a nonlinear inverse problem

- \rightarrow Set of equidistant points $\mathcal{X} = \{x_1, ..., x_n\}$
- \rightarrow Timing profile: $\tau = (\tau_1, ..., \tau_n) := (\tau(x_1), ..., \tau(x_n))$
- \rightarrow Measurement operator:

$$
\begin{array}{rcl}\n\Psi: \mathbb{R}^n & \longrightarrow & \mathbb{R}^n_+ \\
\boldsymbol{\tau} & \mapsto & (\psi(\tau_1), ..., \psi(\tau_n))\n\end{array}
$$

Consider the inverse problem:

$$
\min_{\boldsymbol{\tau} \in \mathcal{P}_{\mathcal{C}}} \|\mathbf{z} - \boldsymbol{\Psi}(\boldsymbol{\tau})\|_2^2, \tag{P1}
$$

where:

$$
\mathcal{P}_C := \{ \tau : \|L\tau\|_0 \le C \}, \ \ L\tau = \ell * \tau, \text{ with } \ell = [1, -2, 1].
$$

 P_C is the set of piecewise linear vectors with at most C breaks.

[Nonlinear inverse problem](#page-14-0)

Challenges

$$
\widehat{\boldsymbol{\tau}} := \argmin_{\boldsymbol{\tau} \in \mathcal{P}_C} \|\mathbf{z} - \boldsymbol{\Psi}(\boldsymbol{\tau})\|_2^2 \quad \textbf{(P.1)}
$$

- $-\Psi$ is nonlinear
- Ψ is not injective

Objective: Provide a global solutions to problem ([P1](#page-13-0))

Assumption

- \rightarrow The form of the operator Ψ is important
- $\rightarrow \Psi(\tau) = (\psi(\tau_1), ..., \psi(\tau_n))$

- $A.1$: $\exists \tau_0 > 0$ such that:
	- $\left. \psi_0 := \psi \right|_{[0,\tau_0]}$ is concave
	- $\left. \psi_1 := \psi \right|_{[\tau_0, \infty)}$ is convex
	- The convexity or concavity of ψ_0 or ψ_1 is strict.
	- both ψ_0 , ψ_1 are injective.

As a consequence: $\#\psi^{-1}(b)=\#\{\bm{\tau}:\psi(\bm{\tau})=b\}\leq 2,\;\;\forall b\in\mathbb{R}_+$

Alternative formulation

If Ψ is not injective, the definition of **P.2** is not intuitive.

$$
\boxed{\min_{\tau \in \mathcal{P}_C} ||\mathbf{z} - \Psi(\tau)||_2^2 \quad (\text{P.1})}
$$

 \rightarrow Use the property: $\#\psi^{-1}(b)\leq 2,~~\forall b\in \mathbb{R}_+$ to enumerate the inverse set

Inverse image

 \rightarrow Inverse image of ψ for $b \in \mathbb{R}_+$:

$$
\psi^{-1}(b) = \psi_0^{-1}(b) \cup \psi_1^{-1}(b)
$$

 \rightarrow Inverse image of Ψ for $\boldsymbol{d} \in \{0,1\}^n$:

$$
\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) := \psi_{d_0}^{-1}(\mathbf{z}_0) \times ... \times \psi_{d_n}^{-1}(\mathbf{z}_n)
$$

 \rightarrow Define:

$$
\mathcal{K}(\mathbf{z}) = \left\{ \boldsymbol{d} \in \{0,1\}^n : \psi_{d_i}^{-1}(z_i) \neq \varnothing \right\}
$$

$$
\Rightarrow \text{ Then: } \Psi_{\boldsymbol{d}}^{-1}(\mathbf{z}) \in \mathbb{R}^n, \text{ for } \boldsymbol{d} \in \mathcal{K}(\mathbf{z})
$$

$$
\Psi(\boldsymbol{\tau})=(\psi(\tau_1),\psi(\tau_2),....,\psi(\tau_n))
$$

Taylor approximation

Because of Taylor approximation theorem, for each $\mathbf{d} \in \mathcal{K}(\mathbf{z})$

$$
\|\mathbf{z}-\Psi(\boldsymbol{\tau})\|_2^2 \approx \sum_{i=1}^n w_{\boldsymbol{d},i}^2 (\Psi_{\boldsymbol{d}}^{-1}(\mathbf{z})-\boldsymbol{\tau})_i^2,
$$

Taylor approximation

Because of Taylor approximation theorem, for each $\mathbf{d} \in \mathcal{K}(\mathbf{z})$

$$
\|\mathbf{z}-\mathbf{\Psi}(\boldsymbol{\tau})\|_2^2 \approx \sum_{i=1}^n w_{\boldsymbol{d},i}^2 (\mathbf{\Psi}_{\boldsymbol{d}}^{-1}(\mathbf{z})-\boldsymbol{\tau})_i^2,
$$

where $\mathsf{w}_{\boldsymbol{d},i} := \psi^{'}(\psi_{\boldsymbol{d}_{i}}^{-1})$ $\bigcup_{d_i}^{-1}(\mathrm{z}_i)\big) \in \mathbb{R}.$ We define: $\|\textbf{v}\|_{\textbf{w}} := \sqrt{\sum_{i=1}^n w_i^2 \mathrm{v}_i^2}.$ Then:

For each
$$
\mathbf{d} \in \{0,1\}^n
$$
: $\|\mathbf{z} - \Psi(\boldsymbol{\tau})\|_2^2 \approx \|\Psi_{\mathbf{d}}^{-1}(\mathbf{z}) - \boldsymbol{\tau}\|_{\mathbf{w}_d}^2$

Resulting in:

$$
\boxed{\min_{\{(\tau,\bm{d})\in\mathcal{P}_{C}\times\{0,1\}^{n}\}}\|\Psi_{\bm{d}}^{-1}(z)-\tau\|_{w_{\bm{d}}}^{2}\quad (P.2)}
$$

 \rightarrow One of the inverse images is close to a piecewise linear behavior

 \rightarrow One of the inverse images is close to a piecewise linear behavior

Equivalence in noiseless case

$$
\hat{\tau} := \underset{\{\tau \in \mathcal{P}_C\}}{\arg \min} \|z - \Psi(\tau)\|_2^2 \quad \textbf{(P.1)} \quad \Longleftrightarrow \quad \boxed{(\tau^*, d^*) := \underset{\{(\tau, d) \in \mathcal{P}_C \times \mathcal{K}(z)\}}{\arg \min} \| \tau - \Psi_d^{-1}(z) \|_{w_d}^2 \quad \textbf{(P.2)}
$$

Theorem. Suppose $\hat{\tau}$ or τ^* do not have constant parts and its breakpoints are sufficiently spaced (more then 1.2 kb). Then $\hat{\tau}=\tau^*,$ and \boldsymbol{d}^* is such that $\Psi^{-1}_{\boldsymbol{d}^*}(\mathrm{z})=\boldsymbol{\tau}^*=\hat{\boldsymbol{\tau}}$

Proof.

Based on the injectivity of Ψ restricted to the correspondent set in \mathcal{P}_C .

Equivalence in noiseless case

Theorem. Suppose $\hat{\tau}$ or τ^* do not have constant parts and its breakpoints are sufficiently spaced (more then 1.2 kb). Then $\hat{\tau}=\tau^*,$ and \boldsymbol{d}^* is such that $\Psi^{-1}_{\boldsymbol{d}^*}(\mathrm{z})=\boldsymbol{\tau}^*=\hat{\boldsymbol{\tau}}$

[Numerical method](#page-31-0)

Rewriting (P.2')

$$
\frac{\min\limits_{\{(\tau,d)\in\mathcal{P}_C\times\{0,1\}^n\}}\|\Psi_d^{-1}(z)-\tau\|^2_{w_d} \quad \text{(P.2)}}{\leftarrow \quad \text{(o-coordinatewise multiplication)} \atop w_d=d\odot w_1+(1-d)\odot w_0}
$$
\n
$$
\frac{\min\limits_{\tau,d}\quad \frac{1}{2}\|d\odot(\tau-\Psi_1^{-1}(z))\|^2_{w_1}+\frac{1}{2}\|(1-d)\odot(\tau-\Psi_0^{-1}(z))\|^2_{w_0}}{\text{s.t.}\quad \tau\in\mathbb{R}^n,\;\|L\tau\|_0\leq C}
$$
\n
$$
d\in\{0,1\}^n
$$

 \approx (ℓ_1 regularization) $\lambda > 0$

$$
\min_{\tau, \mathbf{d}} \quad \frac{1}{2} \|\mathbf{d} \odot (\tau - \Psi_1^{-1}(\mathbf{z}))\|_{\mathbf{w}_1}^2 + \frac{1}{2} \|(1-\mathbf{d}) \odot (\tau - \Psi_0^{-1}(\mathbf{z}))\|_{\mathbf{w}_0}^2 + \lambda \|L\tau\|_1 \quad \text{(P.3)}
$$
\ns.t.

\n
$$
\tau \in \mathbb{R}^n,
$$
\n
$$
\mathbf{d} \in \{0, 1\}^n
$$

Solving the regularized problem

$$
\min_{\substack{\tau,d\\ \text{s.t.} \quad \tau \in \mathbb{R}^n, \\ \mathbf{d} \in \{0,1\}^n}} \frac{1}{2} \|\mathbf{d} \odot (\tau - \Psi_1^{-1}(\mathbf{z}))\|_{\mathbf{w}_1}^2 + \frac{1}{2} \|(1-\mathbf{d}) \odot (\tau - \Psi_0^{-1}(\mathbf{z}))\|_{\mathbf{w}_0}^2 + \lambda \|L\tau\|_1 \quad \text{(P.3)}
$$

- → For each $\boldsymbol{d} \in \{0,1\}^n$, $(\mathsf{P.3})$ is convex
- → For each $\boldsymbol{d} \in \{0,1\}^n$, $(\mathsf{P.3})$ is similar to *generalized lasso*

Proposition. For each $\boldsymbol{d} \in \{0,1\}^n,$ problem $(\textsf{P.3})$ is equivalent to its dual formulation, which is a quadratic optimization problem.

Constraining the set $\{0,1\}^n$

- \rightarrow The set $\{0,1\}^n$ is excessively large to be tractable
- \rightarrow We can constraint this set without changing its optimal solution

 $D = \{d : d$ can be the optimal solution $\} = \{d : d_i = d_{i+1}, \forall i \in I_A\}$ $I_A = \{i : |\psi_0^{-1}(z_i) - \psi_1^{-1}(z_i)| > \epsilon\}$

Algorithm

Algorithm: DNA-Inverse

```
Data: Input data: z. Parameters: \epsilon > 0.
Initialization:
Compute weights w_d. Compute set D. Set: \mathcal{D}_{\text{past}} = \emptyset;
Main Loop:
for d \in \mathcal{D} do
     Step 0: \mathcal{D}_{\text{past}} \leftarrow \mathcal{D}_{\text{past}} \cup \{d\};Step 1: Solve (P.3), obtaining a solution \tau_d^*;
     Step 2:
                                               d^* := \arg \min F(\tau_d^*), \ \ \tau^* := \tau_{d^*}^*,d \in \mathcal{D}_{\text{past}}Output: \tau^*, d^*
```
where:

$$
\digamma(\tau):=\frac{1}{2}\|{\textbf{\textit{d}}}\odot(\tau-\Psi_1^{-1}(z))\|^2_{\textbf{\textit{w}}_1}+\frac{1}{2}\|(1-{\textbf{\textit{d}}})\odot(\tau-\Psi_0^{-1}(z))\|^2_{\textbf{\textit{w}}_0}
$$

[Numerical results](#page-36-0)

 \rightarrow Example of a noiseless signal

 \rightarrow DNA Inverse solution (pink)

 \rightarrow Other optimization methods can solve the ℓ_1 -regularized (P.1)

$$
\min_{\boldsymbol{\tau}\in\mathbb{R}^n}\|\mathbf{z}-\boldsymbol{\Psi}(\boldsymbol{\tau})\|_2^2+\gamma\|\mathrm{L}\boldsymbol{\tau}\|_1,
$$

 \rightarrow One of these methods is the Primal-Dual method (Valkonen, [2019\)](#page-44-0):

$$
G(\boldsymbol{u}) = \|\boldsymbol{u} - \mathbf{z}\|_2^2, \quad G^*(\boldsymbol{y}) = \sup_{\boldsymbol{u} \in \mathbb{R}^n} \langle \boldsymbol{u}, \boldsymbol{y} \rangle - G(\boldsymbol{u}).
$$

$$
\begin{cases} \tau^{k+1} = \text{prox}_{\sigma_1 \gamma \|\cdot\|_1}(\tau^k - \sigma_1 \Psi'(\tau^k) y^k) \\ \mathbf{y}^{k+1} = \text{prox}_{\sigma_2(G^* - 2\langle \Psi(\tau^k), \cdot \rangle)}(\mathbf{y}^k - \sigma_2 \Psi(\tau^k)), \end{cases}
$$

 \rightarrow The PDPS provide local solutions that depend on the initial point: $\bm{\tau}^i, i \in \{1,2,3,4\}$

Execution time

 \rightarrow When compared to PDPS with smart initialization (grey), DNA inverse (pink) exhibits faster performance

Results for real data

 \rightarrow DNA inverse identifies the biological reality behind the signal

 \rightarrow Timing profile τ^* (below, pink), and a signal approximation (above,pink) → The colored dots are selected by the integer variable \boldsymbol{d}^*

Thanks for your attention!!

[References](#page-44-1)

F Valkonen, T. et al (2019). "Acceleration and Global Convergence of a First-Order Primal-Dual Method for Nonconvex Problems". In: SIAM Journal on Optimization 29.1, pp. 933-963. DOI: [10.1137/18M1170194](https://doi.org/10.1137/18M1170194). URL: <https://doi.org/10.1137/18M1170194>.

Extension to the noisy case

- \rightarrow We extend $\bm{w_d}$ to be zero in coordinates $i \in \{1, ..., n\}$ such that $\psi_{\bm{d_i}}(\mathbf{z}) = \emptyset$
- \rightarrow These coordinates contain less information about the signal position

In the noisy case, consider the optimization problem:

$$
\boxed{(\tau^*,\bm{d}^*) := \mathop{\arg\min}\limits_{\{(\tau,\bm{d}) \in \mathcal{P}_C \times \{0,1\}^n\}} \|\Psi_{\bm{d}}^{-1}(\mathbf{z}) - \tau\|_{w_{\bm{d}}}^2 \quad (\mathsf{P}.2^*)}
$$