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Neural density estimators
in search for binary systems in our Galaxy



Galactic Binaries
Image credit: Valeriya Korol
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Signal
in time and frequency domain

Parameters that we can extract:

- frequency

- frequency derivative

- sky localisation

- distance

- position of the orbit relative to observer
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Galactic Binaries
in Milky Way

Milky Way seen with Galactic Binaries

Image credit: Valeriya Korol
Image credit: ESO
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Galactic Binaries
modelling the population

Synthetic population of GBs Milky Way potential Star formation rate

+ +

Image credit: Valeriya Korol
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LISA sensitivity and Galactic Binaries

Image credit: Red book, arXiv:2402.07571 Image credit: arXiv:2405.04690 
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Why they are a problem for data analysis
Unknown number of signal, unknown noise

Main problems:

- at some point signals mix and become confusion 
noise

- we do not know the number of the signals in each 
band

- we have to estimate the noise at the same time as we 
estimate the parameter of the signals
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Parameter estimation
Bayes equation

• approximate inference: 
   - MCMC/Nested sampling 
      requires likelihood evaluation 
    

 
 

• simplification to the model: 
  - Invertible models 
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Sampling to solve Bayes equation
Markov Chain Monte Carlo: fixed dimensionality

• Start from theta_0


• Propose a new point from proposal distribution q


• Accept, or reject with a probability
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Unknown number of dimensions

parameter space
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• Same procedure, now generalized for k-order of model. 
It is organized in two steps.


• Before all, we begin with θk for model k.


1. In-Model Step: The usual MH step, for model k.


2. Outer-Model Step:


‣ Propose new θm for model m from a given proposal 
distribution q.


‣ Essentially propose the “birth” or “death” of dimensions 
at each iteration.  


‣ Accept, or reject with a probability:

<latexit sha1_base64="zo26twAbkr4eeuWsFpfbknK7FgI="></latexit>
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Video source: https://www.youtube.com/watch?v=wBTGoA_dIIo10

Unknown number of dimensions

Image credit: Nikos Karnesis

https://www.youtube.com/watch?v=wBTGoA_dIIo


Unknown number of dimensions
Galactic Binaries, single band example
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FIG. 6: Left panel: In this figure, the histogram of the number of UCB sources preferable by the data is presented
for the particular run. The true injected number is shown with the red dashed line. It is fairly obvious, that for the
given measurement duration of the particular data set, we manage to confidently resolve eight binaries, out of total

ten. Right panel: Corner plot including only two out of the total eight parameters of the waveform of the UCB
sources. These are the given amplitude in SNR ⇢, and the main emission frequency f0 [mHz] (see text for more

details). The violet crosses represent the injected parameter values. A more detailed plot is presented in the
Appendix, in figure A.7.

We choose to work on the frequency segment between
3.997 and 4 mHz, which contains 10 UCB objects, drawn
directly from the LDC2 catalogue [78]. Those are pre-
sented on the top panel of figure 5 which shows the power
spectrum of the A data channel of LISA. We use the
two noise-orthogonal A and E Time Delay Interferome-
try variables [85–87][Nikos: Add more?], which are essen-
tially a combination of the LISA relative frequency TDI
measurements X, Y , and Z as:

A =
1

p
2
(Z � X), E =

1
p

6
(X � 2Y + Z),

T =
1

p
3
(X + Y + Z).

(20)

In ideal conditions (equal noises across space-crafts, and
equal LISA arms), the noise orthogonality between A
and E holds, while the T data-stream is used as a null
channel, useful for instrument noise calibration. We first
simulated the injection data for observation time Tobs =
1 year.

That being said, the optimal SNR computed for each
source ⇢opt, is given in table I. The ⇢opt quantity refers
to the SNR of each source in isolation, with respect to
the instrumental noise, and can be written as

⇢2opt =
X

C

(hC |hC) , (21)

with C 2 {A, E} the noise-orthogonal TDI channels of
eq. (20), while the (·|·) notation represents the noise
weighted inner product expressed for two time series a

and b as

(a|b) = 2

1Z

0

df
h
ã⇤(f)b̃(f) + ã(f)b̃⇤(f)

i
/S̃n(f). (22)

The tilde represents the data in Fourier frequency do-
main, and the asterisk stands for the complex conjugate.
The S̃n(f) is one-sided PSD of the noise for the di↵erent
TDI channels.

For our investigation we chose to analyze noiseless data
(no noise realization), while in the likelihood we are using
the PSD noise levels taken from the LISA design stud-
ies [88]. For the signals, we utilize the fast frequency-
domain UCB waveform model of [89]. Then, the two
polarizations of an emitting UCB are written as

h+(t) =
2M

DL
(⇡fgw(t))2/3

�
1 + cos2 ◆

�
cos ,

h⇥(t) = �
4M

DL
(⇡fgw(t))2/3 cos ◆ sin ,

(23)

where M is the chirp mass, fgw is the instantaneous grav-
itational wave frequency, DL is the luminosity distance,
◆ is the inclination of the binary orbit, and  is the grav-
itational wave phase over time. The phase  can be ex-
pressed as  = �0 + 2⇡

R t
fgw(t0)dt0, with �0 being an

initial arbitrary phase shift. For more details about the
waveform model, we refer the reader to [48, 89, 90].

In our simplified scenario, and with respect to the So-
lar System Barycenter, each binary signal is then gov-
erned by a set of eight parameters. Those are the
~✓ = {A, fgw [mHz], �0, cos ◆, ,�, sin�}, where A is the

11



Proposals
Efficiency of proposals

We rely on two criteria to evaluate the performance of proposals:

- rate of accumulation of effective samples

   - execution time

   - autocorrelation length  
- faithfulness of the posterior 

12



Neural density estimators for proposals
Estimating the densities

q(z) = N (0, 1)

1. We have simple random generator

2. We want to sample from a more complex distribution

3. We can estimate a bijective transformation which will allow us to do that

f(y)

f�1(z)
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Neural density estimators for proposals
Estimating the densities

•       has to be a bijection


•        and             have to be differentiable 


•        Jacobian determinant has to be tractably invertable


p(y) = q(f�1(y))
��det

�
Jf�1(y)

���

f�1
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Neural density estimators for proposals
Estimating the densities

‣ Fit probability distribution function from the samples.


‣ Use Normalising Flows as a density estimator.


‣ Train network by optimising  
Kullback–Leibler divergence between samples and 
transformed base distribution. 
 
 
 

‣ Use estimated distribution for proposals.

KL(p||q) =
X

x

p(x) log


p(x)

q(x)

�
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Priors and proposal for the Galaxy

•  The knowledge on the Galaxy distribution can be used 
either and a prior or as a proposal.
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Neural density estimators for proposals



Priors and proposals from the previously estimated sources
•  Search for GBs from high to low SNRs

•  Overtime we accumulate more data, so we need  
  to update our estimated for the parameters

•  We can use proposals based on the probabilities  
  for the density fits to the already acquired 
  posteriors 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Neural density estimators for proposals



Case of overlapping signals
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Neural density estimators for proposals

•  Easy to extend to high dimensional data

•  Other proposals will fail on the low SNR overlapping 
sources




Normalising flows for parameter estimation
Conditional density estimation

f�1(z)q(z) = N (0, 1)

f(y)

• Do not have access to samples from posterior
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Normalising flows for parameter estimation
Conditional density estimation
• Do not have access to samples from posterior

• Have access to samples from prior + 

q(z) = N (0, 1)

f(y)

p(✓)
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Normalising flows for parameter estimation
Conditional density estimation

q(z) = N (0, 1)

f(y)

p(✓)

• Do not have access to samples from posterior

• Have access to samples from prior + 

• Can generated simulated data x = h(✓) + n
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Normalising flows for parameter estimation
Conditional density estimation
• Do not have access to samples from posterior

• Have access to samples from prior + 

• Can generated simulated data 

Condition inverted map 
on real data

q(z) = N (0, 1)

f(y)

p(✓)

Therefore have access to the joint sample p(x, ✓) = p(x | ✓)p(✓)

x = h(✓) + n
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Normalising flows for parameter estimation
Conditional density estimation
• Do not have access to samples from posterior

• Have access to samples from prior + 

• Can generated simulated data 

Condition inverted map 
on real data

f�1(z)q(z) = N (0, 1)

p(✓|x)f(y)

x̂

x = h(✓) + n
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Normalising flows for parameter estimation
Preliminary Results

• Parameter estimation results for single Galactic Binary

• Disagreement in posteriors can be solved by Importance Sampling

• Can be used as initial proposal or as a separate way to perform 

inference
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Conclusions and outlook in the future

• Combining sampling with the flow on the deeper level

• Improves considerably sampling efficiency

• Still have to be properly incorporated to the Global analysis

• Hierarchical inference for the population of Galactic 
Binaries directly from the results of Global fit
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