Neural density estimators in search for binary systems in our Galaxy

Natalia Korsakova

1 October 2024

Toulouse

Galactic Binaries

WD+WD 6 000 - 60 000

AM CVn 1000

NS/WD+He 2 - 100

Image credit: Valeriya Korol

Signal in time and frequency domain

Freq. (Hz)

Parameters that we can extract:

- frequency
- frequency derivative
- sky localisation
- distance
- position of the orbit relative to observer

Galactic Binaries in Milky Way

Image credit: ESO

Milky Way seen with Galactic Binaries

Image credit: Valeriya Korol

Galactic Binaries modelling the population

Synthetic population of GBs

Milky Way potential

Star formation rate

Image credit: Valeriya Korol

LISA sensitivity and Galactic Binaries

Image credit: Red book, arXiv:2402.07571

Image credit: arXiv:2405.04690

Why they are a problem for data analysis Unknown number of signal, unknown noise

6

Main problems:

- at some point signals mix and become confusion noise

- we do not know the number of the signals in each band

- we have to estimate the noise at the same time as we estimate the parameter of the signals

Parameter estimation Bayes equation

$$p(heta \mid x) = rac{p(x \mid heta) p(heta)}{p(x)}$$

- approximate inference: - MCMC/Nested sampling requires likelihood evaluation
- simplification to the model: - Invertible models

Sampling to solve Bayes equation Markov Chain Monte Carlo: fixed dimensionality

- Start from theta_0
- Propose a new point from proposal distribution q
- Accept, or reject with a probability

Image credit: Nikos Karnesis

Posterior density

https://blog.stata.com/ https://blog.revolutionanalytics.com/

$$\alpha = \min\left[1, \frac{p(\vec{\theta_1}|y)q(\vec{\theta_0}, \vec{\theta_1})}{p(\vec{\theta_0}|y)q(\vec{\theta_1}, \vec{\theta_0})}\right]$$

Unknown number of dimensions

parameter space

Image credit: Nikos Karnesis

- Same procedure, now generalized for *k*-order of model. ulletIt is organized in two steps.
- Before all, we begin with θ_k for model k. lacksquare
- 1. In-Model Step: The usual MH step, for model **k**.
- 2. Outer-Model Step:
- Propose new θ_m for model *m* from a given proposal distribution q.
- Essentially propose the "birth" or "death" of dimensions ► at each iteration.
- Accept, or reject with a probability:

$$\alpha = \min\left[1, \frac{p(y|\vec{\theta}_k)p(\vec{\theta}_k)q(\{k, \vec{\theta}_k\}, \{m, \theta_m\})}{p(y, \vec{\theta}_m)p(\vec{\theta}_m)q(\{m, \vec{\theta}_m\}, \{k, \theta_k\})}\right]$$

Unknown number of dimensions

10 Image credit: Nikos Karnesis

Video source: <u>https://www.youtube.com/watch?v=wBTGoA_dllo</u>

Unknown number of dimensions Galactic Binaries, single band example

Proposals Efficiency of proposals

- We rely on two criteria to evaluate the performance of proposals:
- rate of accumulation of effective samples
 - execution time
 - autocorrelation length
- faithfulness of the posterior

e performance of proposals: mples

Neural density estimators for proposals Estimating the densities

- 1. We have simple random generator
- 2. We want to sample from a more complex distribution
- 3. We can estimate a bijective transformation which will allow us to do that

plex distribution nation which will allow us to do that

Neural density estimators for proposals **Estimating the densities**

$$p(y) = q(f^{-1}(y)) \left| \det \left(J_{f^{-1}}(y) \right) \right|$$

- has to be a bijection
- and f^{-1} have to be differentiable
- Jacobian determinant has to be tractably invertable

Neural density estimators for proposals Estimating the densities

- Fit probability distribution function from the samples.
- Use Normalising Flows as a density estimator.
- Train network by optimising Kullback–Leibler divergence between samples and transformed base distribution.

$$KL(p||q) = \sum_{x} p(x) \log \left[\frac{p(x)}{q(x)}\right]$$

Use estimated distribution for proposals.

Neural density estimators for proposals **Priors and proposal for the Galaxy**

 The knowledge on the Galaxy distribution can be used either and a prior or as a proposal.

Neural density estimators for proposals Priors and proposals from the previously estimated sources

Search for GBs from high to low SNRs
Overtime we accumulate more data, so we need to update our estimated for the parameters
We can use proposals based on the probabilities for the density fits to the already acquired posteriors

Neural density estimators for proposals Case of overlapping signals

Easy to extend to high dimensional data
Other proposals will fail on the low SNR overlapping sources

Do not have access to samples from posterior

- Do not have access to samples from posterior
- Have access to samples from prior +

f(y)

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x = h(\theta) + n$

for posterior $r + b(\theta) + n$

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x = h(\theta) + n$

$q(z) = \mathcal{N}(0, 1)$

 $p(x, \theta) = p(x \mid \theta)p(\theta)$ Therefore have access to the joint sample 19

Condition inverted map on real data

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x = h(\theta) + n$

Condition inverted map on real data

Normalising flows for parameter estimation **Preliminary Results**

20

• Parameter estimation results for single Galactic Binary Disagreement in posteriors can be solved by Importance Sampling Can be used as initial proposal or as a separate way to perform

Conclusions and outlook in the future

- Improves considerably sampling efficiency
- Still have to be properly incorporated to the Global analysis
- Combining sampling with the flow on the deeper level
- Hierarchical inference for the population of Galactic Binaries directly from the results of Global fit