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Introduction

* Both weather & climate simulations are produced by numerical models, that
integrate physical knowledge about the atmosphere (and possibly about the other
earth system components)

* ML has recently changed the landscape, opening new perspectives to enhance the
computation, accuracy and processing of weather & climate simulations

* The most disruptive application is a partial to complete replacement of physics-
based models by data-driven models — focus of this presentation
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The weather prediction processing chain
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Al can be integrated in the different stages, in particular in
the modeling part O]
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Weather prediction : a complex and high-
dimensional problem

State-of-the-art atmospheric models are resolved on spatial grid with resolution ~
10km at the global scale and ~ 1km at the regional scale : they simulate a wide
range of scales, from large-scale flow to very localized phenomena (thunderstorms,
turbulence), from minutes to several days ahead.

They also integrate a large range of heterogeneous observations data for the
computation of their initial conditions (through data assimilation techniques)

z' = M(a') 5 2% = F(2°,p)
\ 0(10°) 0(107) /

Dimensions keep increasing as model resolution and observations improve

Fundamental physical principles

4 Conservation of mass
M 4 Conservation of energy
4 Conservation of momentum ©)]

4 Consider budgets of these quantities for a control volume PRANCE




From physics-based models to data-driven
models : a range of possible solutions

Initial

conditions

.

Initial
conditions

Initial
conditions
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Forecast

Forecast

Well established models, but
performances limited by

- understanding of physics

- computing resources

The ‘in-between’, ML could help

- uncover physical relationships

- reduce computational burden
while preserving the physical
consistency of classical modeling

A change of paradigm, with very
rapid predictions, and challenges

- costly training

- reliance on availability of high
quality datasets

- black box, physical consistency ?
- generalization to out of distrib ?



The rise of data-driven modeling : an unexpected
rapid (r)evolution ?

* A (simplified) timeline

Can deep learning beat
Al replacing our numerical weather prediction?

fO recaSti ng mOdel 7 M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert,

| don’t understand what  Mlangguth, L H. Leufen, A. Mozaffariand
S. Stadtler

AIFS: a new ECMWEF forecasting system
you mean ! ‘

2015 2018 2021 202223 I Everyone runs its
L'IA de Google DeepMind vient own ML model ?
Challenges and design choices for global weather and climate ﬂuhmu:::.:ger les meteorologues

models based on machine learning

Peter D. Dueben and Peter Bauer
European Centre for Medium-range Weather Forecasts, Shinfield Rd, Reading, RG2 9AX, UK
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The rise of data-driven modeling : an unexpected
rapid (r)evolution ?

* A (simplified) timeline

Can deep learning beat

Al replacing our numerical weather prediction? ECMWEF unveils alpha version of new ML
forecasting model ? M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, mode|
| don’t understand What M. Langquth, L. H. Leufen, A. Mozaffari and
S. Stadtler GenCast: Diffusion-based ensemble forecasting " Goodle. H i
you mean ' for medium-range weather NS?S@’, le;vgggﬂ, l
llan Price” ", Alvaro Sanchez-Gonzalez ', Ferran Alet', Timo Ewalds', Andrew El-Kadi®, Jacklynn Stom’, EC MWF

2015 2018 2021

GraphCast: Learning skillful medium-range
global weather forecasting

Remi le'-_' . Alvaro San-:hﬂ:c_pnnznlcz'-'. Matthew Willson ', Peter Wirnsberger ', Meire Formunatw ™',
. . iaton-Rosen’, Weihua Hu', Alexander Merose”,
Pangu-Weather: A 3D High-Resolution System i su, sesnder priter’, shakir Mohamed* and
for Fast and Accurate Global Weather Forecast

Challenges and design choices for global weather and climate _ - _ _
Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiactao Gu, and Qi Tiar™, Fellow, [EEE

models based on machine learning

Peter D. Dueben and Peter Bauer
European Centre for Medium-range Weather Forecasts, Shinfield Rd. Reading, RG2 9AX, UK
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The rise of data-driven modeling : an unexpected
rapid (r)evolution ?

* A (simplified) timeline

Can deep learning beat
Al replacing our numerical weather prediction?

fO recaSti ng mOdel 7 M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert,

| don’t understand what M. Langguth, L. H. Leufen, A. Mozaffari and
S. Stadtler

AIFS: a new ECMWEF forecasting system
you mean ! ‘

2015 2018 2021 2022/23 I Everyone has its
L'lA de Google DeepMind vient own ML model ?
d’humilier les météorologues

Challenges and design choices for global weather and climate

! : humains
models based on machine learning

Peter D. Dueben and Peter Bauer
European Centre for Medium-range Weather Forecasts, Shinfield Rd, Reading, RG2 9AX, UK
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The rise of data-driven modeling : is it really a
surprise ?

Weather Centers have very large archives of observations (satellite, in-situ)
and Numerical Weather and Climate Prediction models

More and more datasets are under an Open Access licence

The prediction problem is inherently a good deep learning challenge

All the ingredients are here to make ML a powerful tool for weather & climate
prediction (given we have enough GPU resources & ML expertise)
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Problem overview

ML emulates the forecasting model M

t+dt _ A, t
' = M(z")
* Prediction over several time steps obtained with an auto-regressive approach

oty pttdt _ /\;l(mt) _y ptt2dt M($t+dt) Ly pttndt A’;l(m,wr(n—l)dt)

* General approach

channels
Ug longitudes

— PR Qutput (time = t + At)

Input (time = &)

atitudes

| s
==>  Processor = § —>
* " ()
o

* Inputs : generally gridded data of atmospheric variables at different altitudes
(8
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What’s behind the most popular models ?

A common training datasets : ERAS data, one of the most accurate reconstructions of the
past weather on a ~30km global mesh, available from 1940s

a) Encoder b) Processor ¢) Decoder

A diversity of Al architectures
« CNN
* Vision Transformers
e Graph Neural Networks
* Neural operators

Performances close to those of physical models for the medium range, with some known
weaknesses

A very rapid inference time : a few sec to min (compared to ~ hour with physical models)

A black box

* Need for interpretability and explainability tools

Transformer Encoder

The next challenges
* Emulators at very high resolution Patch + Busition _, EI5 @15 ga
* Learning from heterogeneous observations

[elass] embedding
—-—%Hlﬂ%‘% EWE

* Extra learnable
[ Lmear Prc:-]ectmn of Flattened Patches
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An (incomplete) overview of current models

Basic Model

Description

Method

MLP
(Multi-Layer Perceptron)

early neural network suited for nonlinear
challenges

Dueben et al. [62]

CNMs
(Convolutional Neural Networks)

efficiently processing spatial data and
Extracting features

Scher et al. [61]
Weyn et al. [64]
Weyn et al. [78]

ResNet enabling deeper networks through -
(Fesidual Network) efficient residual connections Rasp et al. [79]
GNN capturing spatial and temporal dynamics Keisler et al. [50]

(Graph Meural Network)

critical in fluid dynamics

GraphCast [65]

FourCastNet [73]
FengWu [74]

processes input data through Pangu [24]

Transformer self-attention and feedforward layers ClimaX [81]
FengWu-GHR [77
Fuxi [75]
EPD

a differentiable model with deep learning NeuralGCM [76]

{(Encode-Process—Decode)

Method. Hardware Training Cost Inference Cost
Weyn et al. [75] 1 NVIDIA V100 GI'U 2-3 days 4-week forecast in less than 0.2 s on one GI'U
Keisler et al. [80] 1 NVIDIA A100 GPU 5.5 days 5-day forecast takes about 0.8 s on one GPU
FourCastNet [73] A4 NVIDIA A100 GPU 16h 1 week-long forecast in less than 2 s on one GIPU
Pangu [24] 192 NVIDIA V100 GPU 16 days 5-day forecast takes 1.4 s on one GPU
FengWu [74] 32 NVIDIA A100 GPU 17 days 10-day forecast takes (1.6 s for on one GPU
GraphCast [65] 32 Cloud TPU v4 about 4 weeks 10-day forecast takes less than 1 min on one TPU
ACE [99] 4 NVIDIA A100 GPU 63 h 1 day simulate takes 1 s on one GPU

10-day forecast takes from 2.5 s to 119 s in different

. I T wr
16-256 Cloud TPU v4 spatial resolutions on one TPU

Neural GCM [76] 1 day to 3 weeks

Page 12 From Wu and Xue, 2024 — See also https://github.com/jaychempan/Awesome-LWMs



Example : PanguWeather (Huaweil)

0% a 3D Earth-specific transformer
E
40 =
‘g . (C =192)
a @ ™
=
(= Layer 1 Layer 4
—Ap = *| Earth-specific block « 2 - Earth-spac!rrri: block =2 |-
Merge |”| (ax3a0=181xC) Bx360x181x0C) |
Upper-air variables /! : : r " Upper-air variables
(13 = 1,440 = 721 = 5) / * Down-sampling | Up-sampling | (13 = 1,440 = 721 = 5)
/ v ' :
/ Layer 2 Layer 3
I Earth-specific block = & Earth-specific block = &
/ (2 =180 = 91 = 20) (8= 180 =91 = 20C)
)
Encoder Decoder
Surface variables Surface variables
(1,440 = 721 x 4) (1,440 = 721 = 4)
b Hierarchical temporal aggregation
Trained models FiM24 FMe FM3 FM

Output: predicted
reanalysis data, A_
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Example : FourCastNet (NVIDIA)

Output (time = ¢ + At) (b) Fine-tuning

{a) AFNO architecture )
Kl B-10 loss Kol b H2)

-:L- . _,_!

X(Fk) AFNG AFNO

gl del
mode X(h 1) mode X(k+2)

‘4 nir| | [ Linear Decoder ) | () Precipitation model (k1)
- “L layers \ L. loss

- [ Channel Mixing ]
[ Spatial Mixing ] X(k) AFNO AFNO

.

(backbone™) X(kt 1) (precip.) pli-1)

Enn =M =50~ i
I MLP ‘1"‘{ j ‘ i i t L \, Frre-trained and
= Patch and Position Embedding | fine-tuned AFNO
madlel with froeen
f f f i i S
J : | —_—— - —— paramnebers,
r h g E .:—t_":'- rE-I' ;,Ji? ?_‘ ’}V.; detnched gradients
P
1 1 !
channels .
Input [time — 1 R
U lomgitudes put { ) (d) Inference
Vi "
ap E
arealys =
e =
;m - AFNO AFNO
i P { backbone 1 (precip) [T :
. B Xik) ' ) Xk P ) p(kt1)
TCWT

Combines the Fourier Neural Operator (FNO) learning approach with a ViT backbone.
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Example : GraphCast (Google DeepMind)

¢) Roll out a forecast See next presentation

\

d) Encoder e) Processor f) Decoder

¥ AL B

IR NS

g) Simultaneocus multi-mesh message-passing
MU - M'l Mz - .-.1_?____. M3 e —
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Conclusions

GenCast

e The problem of data-driven atmospheric modeling is being
adressed by both industrial and academics, with a rapid
acceleration since 2022

e Most implementations focus on the forecast model emulation
with an encoder-processor-decoder architecture and
Transformer backbone (also GNN for flexibility of encoding
+ decoding). New models showing up very quickly : only a
selection has been presented here !

Diffusion solver steps

e Current focus

* High-resolution regional models (~ km)

* Generative ML such as diffusion models : they increase
the realism (‘sharpness’) of predictions and allow for
uncertainty quantification, a key issue in weather
forecasting (see e.g. GenCast model from Google)

— Will be explored in the ANITI Chair EXPLEARTH @u |
\
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What's next ?

e In current approaches the initial state remains estimated by traditional approaches : the next
challenge is to design systems that directly learn from heterogeneous, sparse and non-

static observations, in order to emulate the entire pipeline.

Current ML models
Next generation ML models : an end-to-end approach
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Learning from heterogeneous observations

REMOTE SENSING OBSERVATIONS (ON-THE-GRID)

IAST, AMSUA, AMSUB, HIRS GRIDSAT, SEVIR]

IN-SITU OBSERVATIONS (OFF-THE-GRID)
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HADISD ICOADS IGRA

- A large variety of instruments

- Different quantities mesured

- Spatial-temporal heterogeneity

- Sparse, missing and non-static observations
- A wide range of formats and data structures
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Early end-to-end approaches

Assessing the Feasibility of an NWP Satellite Data
Assimilation System Entirely Based
on Al Techniques

Eric S. Maddy ', Sid A. Boukabara™, and Flavio Iturbide-Sanchez ', Senior Member, IEEE

Deep Learning for Day Forecasts from Sparse Observations

DATA DRIVEN WEATHER FORECASTS TRAINED AND
INITIALISED DIRECTLY FROM OBSERVATIONS

End-to-end data-driven weather prediction

Anna Vaughan*% I Stratis Markﬂu*ﬂ, Will Tebbuttz, James Requeimaj’, Wessel P. Bruinsmeﬁ,

Tom R. Andersson®’, Michael Herzngﬁ, Nicholas D. Lane!, Matthew Chantryg, J. Scott Hnskingi?
and Richard E. Turner 2%
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Aardvark Weather (2024) : an end-to-end data-driven
weather prediction system
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A VIT forms the backbone of the encoder and processor modules
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ECMWF (McNally et al., 2024)

network input data T F; rediction of masked observation . predictions of
with masking ' :

.  observations
P i ST f R . T
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ATMS Y S b Py backbone neural network ) Reio sy i
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« A key challenge is to learn the spatial and temporal correlations that exist within a given

observation type, but also between different measurement systems, and encapsulate these within
the internal latent space of the machine learning model »
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Emulation of data assimilation (Maddy et al., 2024)

G(z)
Al Analysis — FV3 GFS 6hr Forecast
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The Graal : a foundation model for the Earth System ?

Coming soon : Weather Generator (Horizon Project 2025-2029)
Building on early works by Lessig et al. : AtmoRep model
From heterogeneous data to a wide range of applications ...

ERAS — nowcasting
CERRES — ] —’~ medium-range
S decadal projections

DestinE DT — data-assimilation
L reanalysis

reanalysis
data

uoi3dipaid

sso|Weas

s WeatherGenerator

data
a1ewnss
2]1e1S ]saq

pﬂ(may)

simulation

satellite — energy output
ground-based —| —‘ extreme event risk

unconventional —

suones|dde
1edwi-ybiy

observations

= |magine if ... there are off-the-shelf tools for a wide range of applications, including
(1) data assimilation, (2) global and limited area ensemble predictions, (3)
downscaling, (4) local vegetation, urban, flood, health, and energy models, (5)
visualisation, (6) data compression and many more. (From P. Dueben)
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In a few years, a range of possibilities

Initial
conditions

Observations

Everything —

Forecast
model

Weather
forecast

Data

assimilation

=+

Forecast
model

Weather
forecast

Foundation

model

2022 and +
— Extend to very high resolution and
probabilistic/ensemble prediction

2024 and +
— Ongoing demonstration of feasibility
and stability

2024 and +

— Learn a rich representation of the
Earth system, combined with task-
specific decoders to provide a wide
range of applications in Earth
sciences, dream or reality ?



Cross-cutting challenges

e Physical consistency (custom loss, architectures constraints, verification methods)
e Generalization on out-of-distribution samples (representation of extreme events)
e Uncertainty quantification : probabilistic deep learning approaches
e Gaining insight from XAl
- The applicability of XAl approaches originally proposed for image classification

(Grad-CAM, LIME, Shap, ...) are now being tested on weather and climate tasks.
- The sensitivity to the choice of XAl method is still an open question

C)
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First steps toward XAl

Finding the Right XAl Method—A Guide for the Evaluation and Ranking of
Explainable Al Methods in Climate Science

Interpretable Machine Learning for Weather and Climate
Prediction: A Survey

Transferability and explainability of deep learning emulators for regional

climate model projections: Perspectives for future applications

Location 1 Location 2

PP MOS PP IMOS
MorESM CHRM MNorESM CMRM MorESM CHRM NorESM CMEM
928 13.51 .53 1 3 14.6% 3.55 12.31

B 5 .
532 1313 593 .

s
ol B

Saliency maps (from Bano-Madina et al., 2024

" Will be explored in the ANITI Chair
08 EXPLEARTH with IMT (L. Risser)
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Concluding remarks

Al is here to stay and is likely to disrupt the computation and exploitation of
weather/climate predictions

Al has become a new research topic at Météo-France : the 2024-2025 focus is to

develop our own data-driven model for km-scale forecast
(https://github.com/meteofrance/py4cast)

Al emulators of weather models are likely to come into operations very soon, next
challenge is end-to-end systems that exploit the large corpus of heterogeneous
observations

We need to gain more insight into the black box, integrate more physical
constraints and further refine the evaluation framework

Fully exploiting the potential of Al requires a pluri-disciplinary approach : different
communities need to work together

“I think that you will all agree that we are living in most interesting times. | never remember myself a time
in which our history was so full, in which day by day brought us new objects of interest, and, let me say
also, new objects for anxiety.”

METEO
FRANCE

/]| B) British statesman Joseph Chamberlain, 1898 (taken from a Canadian colleague) (9
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