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Land surface monitoring with
satellites



Land surface monitoring with satellites
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Machine learning



The interest of connectionist approaches (i.e. Deep Learning)

• Modular approach (architecture based on specialized building blocks)

• Straightforward scaling (parallelism, incremental learning)

• Bayesian point of view→ uncertainty estimation
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Input
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Introducing prior domain knowledge through biases

 

Modelx

Data

y

Prediction

L(x, y)

Loss

Observational
Bias

Learning
Bias

Inductive
Bias

 
• Observational: choosing the data
source for the problem.

• Inductive: structure of the model
(convolution, recurrence, attention).

• Learning: MSE, NLL, Perceptual, etc.
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ML and assimilation



Assimilation vs back-propagation
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Physically aware ML in EO

Regression

DNNSat Obs Phys Var

Ground Truth

≈ [Loss]

Model Inversion

Phys Var Phys Model Simulation DNN ̂Phys Var

≈ [Loss]

ML Assimilation

Sat Obs DNN ̂Phys Var Phys Model ̂Sat Obs

≈ [Loss]
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Physically aware DL - Using inductive and learning biases

 

Modelx

Data

y

Prediction

L(x, y)

Loss

Observational
Bias

Learning
Bias

Inductive
Bias

 

• Inductive: physical (differentiable)
models in the generative process,
constraints on latent variables
(distributions).

• Learning: reconstruction penalties
(sensor model), statistical model for
outputs (noise model).
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Physically aware VAE
Amortized Variational Inference

Physical model as likelihood: hic sunt dracones…
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Examples



Pheno-VAE (Zérah et al. 2023)

Pixel scale vegetation phenology retrieval from satellite image time series
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PROSAIL-VAE (Zérah et al. 2024)
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PROSAIL-VAE (Zérah et al. 2024)

Pixel scale leaf and canopy parameter retrieval from satellite image time series

Decoder - PROSAIL

PROSPECT-5

4SAIL
Leaf

reflectance
spectra

Latent
distribution
parameters
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input
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PROSAIL-VAE (Zérah et al. 2024)

Beyond parameter retrieval
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Generic multi-temporal representations: U-BARN, ALISE (Dumeur et al. 2024)
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Multi-Modal Data Cube

Find a physically plausible, common latent space for multi-modal observations

S2 Enc

S1 Enc Latent space

Phys
Model

DNN

Phys
Model

DNN
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Multi-Modal Data Cube
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Putting it all together:
Large Representation Models for EO -
RELEO



Large Representation Models for EO - RELEO

WP4

WP1, WP2

WP3

Auxiliary data (climate, topography)

Optical

Radar

Thermal-IR

Joint probabilistic rep-
resentation

Conditioning (resolu-
tion, weather forcing)

EV maps

Physical simulators

Φ1 Optical

Φ2 Radar

Φ3 Thermal-IR
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Work Packages
WP1 - Representation of heterogeneous EO data
• Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models
• Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions

WP3 - Probabilistic predictions of Essential Variables
• Decoding generic probabilistic embeddings of RS observations into EVs maps with associated uncertainties
at user-defined spatial and temporal scales

WP4 - A multi-task self-supervised learning framework
• Designing a self-supervised multi-task framework for end-to-end training

WP5 - Integration
• Integrating research from WP1-4 into an open-source scalable system to support applications in WP6

WP6 - Assessment of pre-trained LEOM for RS applications
• Assessing the usefulness of the proposed framework through selected representative use-cases

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02 16



Work Packages
WP1 - Representation of heterogeneous EO data
• Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models
• Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions

WP3 - Probabilistic predictions of Essential Variables
• Decoding generic probabilistic embeddings of RS observations into EVs maps with associated uncertainties
at user-defined spatial and temporal scales

WP4 - A multi-task self-supervised learning framework
• Designing a self-supervised multi-task framework for end-to-end training

WP5 - Integration
• Integrating research from WP1-4 into an open-source scalable system to support applications in WP6

WP6 - Assessment of pre-trained LEOM for RS applications
• Assessing the usefulness of the proposed framework through selected representative use-cases

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02 16



Work Packages
WP1 - Representation of heterogeneous EO data
• Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models
• Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions

WP3 - Probabilistic predictions of Essential Variables
• Decoding generic probabilistic embeddings of RS observations into EVs maps with associated uncertainties
at user-defined spatial and temporal scales

WP4 - A multi-task self-supervised learning framework
• Designing a self-supervised multi-task framework for end-to-end training

WP5 - Integration
• Integrating research from WP1-4 into an open-source scalable system to support applications in WP6

WP6 - Assessment of pre-trained LEOM for RS applications
• Assessing the usefulness of the proposed framework through selected representative use-cases

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02 16



Work Packages
WP1 - Representation of heterogeneous EO data
• Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models
• Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions

WP3 - Probabilistic predictions of Essential Variables
• Decoding generic probabilistic embeddings of RS observations into EVs maps with associated uncertainties
at user-defined spatial and temporal scales

WP4 - A multi-task self-supervised learning framework
• Designing a self-supervised multi-task framework for end-to-end training

WP5 - Integration
• Integrating research from WP1-4 into an open-source scalable system to support applications in WP6

WP6 - Assessment of pre-trained LEOM for RS applications
• Assessing the usefulness of the proposed framework through selected representative use-cases

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02 16



Work Packages
WP1 - Representation of heterogeneous EO data
• Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models
• Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions

WP3 - Probabilistic predictions of Essential Variables
• Decoding generic probabilistic embeddings of RS observations into EVs maps with associated uncertainties
at user-defined spatial and temporal scales

WP4 - A multi-task self-supervised learning framework
• Designing a self-supervised multi-task framework for end-to-end training

WP5 - Integration
• Integrating research from WP1-4 into an open-source scalable system to support applications in WP6

WP6 - Assessment of pre-trained LEOM for RS applications
• Assessing the usefulness of the proposed framework through selected representative use-cases

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02 16



Work Packages
WP1 - Representation of heterogeneous EO data
• Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models
• Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions

WP3 - Probabilistic predictions of Essential Variables
• Decoding generic probabilistic embeddings of RS observations into EVs maps with associated uncertainties
at user-defined spatial and temporal scales

WP4 - A multi-task self-supervised learning framework
• Designing a self-supervised multi-task framework for end-to-end training

WP5 - Integration
• Integrating research from WP1-4 into an open-source scalable system to support applications in WP6

WP6 - Assessment of pre-trained LEOM for RS applications
• Assessing the usefulness of the proposed framework through selected representative use-cases

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02 16



What we have learned so far
When we say multi-modal…
• OK, we don’t have video, audio, tweets, kitties, …

but we have: visible, infrared, thermal, microwave, lidar …
in 4D (x, y, t, λ)

We have plenty of open data for pre-training, but building good pre-training datasets is not easy
• Use all available spectral bands, with appropriate levels of corrections, look for temporal co-occurrences

• Add auxliary data: weather, climate, topography, etc.

Latent spaces are not N (0, I)
• Physical magnitudes may be bounded, have assymetric distributions, be correlated, …

We need fully differentiable physical simulators… and all models are wrong!

Pre-training strategies from NLP or CV may not work…
• Pretext tasks need the right amount of difficulty to be pertinent.

Most published models in EO are not validated on meaningful downstream tasks
• We want to accurately map the continental biosphere at high resolution and with uncertainty estimation.

• Hallucination is not an option
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Let’s do science FAST with LLMs!

• LLMs can summarize papers

• LLMs can review papers

• LLMs can write papers

• LLMs can suggest scientific questions

If a Tree Falls in the Forest, and There’s No One Around to Hear It, Does It Make a Sound?
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