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Land surface monitoring with
satellites



Land surface monitoring with satellites
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Machine learning



The interest of connectionist approaches (i.e. Deep Learning)

- Modular approach (architecture based on specialized building blocks)
- Straightforward scaling (parallelism, incremental learning)

- Bayesian point of view — uncertainty estimation
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Introducing prior domain knowledge through biases

Prediction - Observational: choosing the data
source for the problem.

- Inductive: structure of the model
fffff Lo (convolution, recurrence, attention).

' Observational,

- Learning: MSE, NLL, Perceptual, etc.
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ML and assimilation



Assimilation vs back-propagation

& Fomvartiosis

Simulator
Dynamic model State variable Observation model Observable

SAFY SoilMoisture(t) PROSAIL 7" (A1)
SAMIR Temperature(t) CWM p(AT)
STICS Biomass(t) DART Ty(A )

Parameter:

Soil texture

Soil depth

Leaf angle

Assimilation
Inverse mode

Forward pass

Encoder
Stem Learner Latent
= o = e Regression
re-processing Representation variables e
Classification
[ [ Optimization

Output

Back-propagation

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02




Physically aware ML in EO

Regression
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Physically aware ML in EO

Regression

Model Inversion
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Physically aware ML in EO

Regression

Model Inversion
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Physically aware DL - Using inductive and learning biases

- Inductive: physical (differentiable)
models in the generative process,
constraints on latent variables

' Inductive | (distributions).
| Bias 1 . . .
fffff T - Learning: reconstruction penalties
AN (sensor model), statistical model for
Data Prediction outputs (noise model).

5 DEEP LEARNING -

winclesofEnvironmental Physics 25 &)
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Physically aware VAE
Amortized Variational Inference
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Physically aware VAE
Amortized Variational Inference
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Examples



Pheno-VAE (Zérah et al. 2023)

Pixel scale vegetation phenology retrieval from satellite image time series
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Pheno-VAE (Zérah et al. 2023)

Pixel scale vegetation phenology retrieval from satellite image time series
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Pheno-VAE (Zérah et al. 2023)

Pixel scale vegetation phenology retrieval from satellite image time series
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PROSAIL-VAE (Zérah et al. 2024)
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PROSAIL-VAE (Zérah et al. 2024)

Pixel scale leaf and canopy parameter retrieval from satellite image time series
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PROSAIL-VAE (Zérah et al. 2024)

Beyond parameter retrieval
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Generic multi-temporal representations: U-BARN, ALISE (Dumeur et al. 2024)
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Multi-Modal Data Cube

Find a physically plausible, common latent space for multi-modal observations
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Multi-Modal Data Cube

Find a physically plausible, common latent space for multi-modal observations
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Multi-Modal Data Cube

Find a physically plausible, common latent space for multi-modal observations
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Multi-Modal Data Cube

Find a physically plausible, common latent space for multi-modal observations
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Multi-Modal Data Cube

Find a physically plausible, common latent space for multi-modal observations
InputSl asc Input S1 desc Input S2 rgb Input S2 nes
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Putting it all together:
Large Representation Models for EO -
RELEO



Large Representation Models for EO - RELEO

Auxiliary data (climate, topography)
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Work Packages
WP1 - Representation of heterogeneous EO data
- Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features
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Work Packages
WP1 - Representation of heterogeneous EO data
- Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models

- Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions
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at user-defined spatial and temporal scales
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Work Packages
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WP5 - Integration
- Integrating research from WP1-4 into an open-source scalable system to support applications in WP6
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Work Packages
WP1 - Representation of heterogeneous EO data
- Learning joint representations of multi-modal RS data that are heterogeneous in time, space and features

WP2 - Modeling uncertainties with generative models

- Learning scalable generative models for representing RS data and their uncertainties while accounting for
multi-modal complex distributions

WP3 - Probabilistic predictions of Essential Variables

- Decoding generic probabilistic embeddings of RS observations into EVs maps with associated uncertainties
at user-defined spatial and temporal scales

WP4 - A multi-task self-supervised learning framework
- Designing a self-supervised multi-task framework for end-to-end training

WP5 - Integration
- Integrating research from WP1-4 into an open-source scalable system to support applications in WP6

WP6 - Assessment of pre-trained LEOM for RS applications

- Assessing the usefulness of the proposed framework through selected representative use-cases
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What we have learned so far
When we say multi-modal...

- OK, we don't have video, audio, tweets, kitties, ...

ﬂ@w
A

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02



What we have learned so far
When we say multi-modal...

- OK, we don't have video, audio, tweets, kitties, ... but we have: visible, infrared, thermal, microwave, lidar ...
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ﬂ@w
A

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02



What we have learned so far
When we say multi-modal...

- OK, we don't have video, audio, tweets, kitties, ... but we have: visible, infrared, thermal, microwave, lidar ...

in 4D (x,y,t,\)

We have plenty of open data for pre-training, but building good pre-training datasets is not easy
- Use all available spectral bands, with appropriate levels of corrections, look for temporal co-occurrences

- Add auxliary data: weather, climate, topography, etc.
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Latent spaces are not \V(0, /)

- Physical magnitudes may be bounded, have assymetric distributions, be correlated, ...
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- Pretext tasks need the right amount of difficulty to be pertinent.
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When we say multi-modal...

- OK, we don't have video, audio, tweets, kitties, ... but we have: visible, infrared, thermal, microwave, lidar ...
in4D (x,y,t,\)

We have plenty of open data for pre-training, but building good pre-training datasets is not easy
- Use all available spectral bands, with appropriate levels of corrections, look for temporal co-occurrences

- Add auxliary data: weather, climate, topography, etc.

Latent spaces are not \V(0, /)

- Physical magnitudes may be bounded, have assymetric distributions, be correlated, ...

We need fully differentiable physical simulators... and all models are wrong!

Pre-training strategies from NLP or CV may not work...
- Pretext tasks need the right amount of difficulty to be pertinent.

Most published models in EO are not validated on meaningful downstream tasks
- We want to accurately map the continental biosphere at high resolution and with uncertainty estimation.

ESBIO Hallucination is not an option &¢
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Let's do science FAST with LLMs!

- LLMs can summarize papers
- LLMs can review papers
- LLMs can write papers

- LLMs can suggest scientific questions

ﬂ@w
A

Inglada et al. RELEO - AISSAI - Toulouse 2024-10-02



Let's do science FAST with LLMs!

- LLMs can summarize papers

- LLMs can review papers

- LLMs can write papers

- LLMs can suggest scientific questions

ﬂzw

Inglada et al.

A.l. TURNS THIS SINGLE
BULLET POINT INTO A
LONG EMAIL | CAN
PRETEND I WROTE.

A.l. MAKES A SINGLE
BULLET POINT OUT OF
THIS LONG EMAIL | CAN
PRETEND | READ.

RELEO - AISSAI - Toulouse 2024-10-02

& @ marketoonist.com



Let's do science FAST with LLMs!

- LLMs can summarize papers

- LLMs can review papers

- LLMs can write papers

- LLMs can suggest scientific questions

ﬂzw
=\

If a Tree Falls in the Forest, and There’s No One Around to Hear It, Does It Make a Sound?
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