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Human reasoning and scientific discovery

Inductive and deductive reasoning
I From observations we construct a theory (F = mγ)
I We then use the theory to make predictions and design objects
I Until the theory is proven to be incorrect

Sudoku grid with solution Protein structure with its sequence

The theory is written as pairwise Cost Function Network
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Cost Function Networks

Pairwise Cost Function Network (Ising/Potts/Graphical model)

I A set X of variables n variables
I Variable xi has domain Di max. size d
I a set of cost/energy functions eij : Di × Dj → R ∪ {∞}

Costs and probabilities
I The cost E(t) of an assignment t is the sum of all cost functions on t
I Toulbar2 finds argmint E(t) and proves optimality.
I A CFN defines a probability distribution: P(t) ∝ exp(−E(t)) Markov Random Fields
I Normalizing constant is #P-hard to compute
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Designing Proteins The engines of Life

I Most active molecules of life (virus to humans)
I Useful in health to green chemistry
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Protein folding

DVVGKVVDGKDD· · · GVKVGDKVKVKKV

Organizes different types of atoms in 3D

Sequence Structure Function
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Protein folding

 X
Amino acid sequence
(20 letters alphabet)

Φ
Continuous SE(3)-invariant

3D structure
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Designing Proteins with physics

Φ

A quite successful all physics+logic generative process

The Toulbar package […] significantly improved the state-of-the-art efficiency for protein design
Com. ACM-20, B. Donald et al.
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Binary CFN
Physics

Rosetta
beta_nov16 P(X|Φ)

Design
constraints

X∗ =DVVGKVVDGKDD…
toulbar2

Reasoning

XIXth century physics NP-hard

A quite successful all physics+logic generative process

The Toulbar package […] significantly improved the state-of-the-art efficiency for protein design
Com. ACM-20, B. Donald et al.
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Φ Neural net

PDB
195,000 (Φ, X)

CFN
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piece-wise constant

Issues
I Gradients either zero or undefined
I Requires to repeatedly solve random NP-hard instances
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Injecting ML / intuition1

X

Φ Neural net

PDB
195,000 (Φ, X)

CFN
P(X|Φ)

X∗toulbar2

Hamming
piece-wise constant

Our solution IJCAI’2023

I Introduced a dedicated loss: the E-Pseudo Log Likelihood (Defresne et al. 2023)
I Kicked the solver out of the training loop (scalable training)
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Protein Design architecture
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Learning to play Sudoku

Φ Neural net

Sudoku
Library

CFN
P(X|Φ)

X∗

toulbar2

Approach Architecture Acc. Grids Training set

RRN NeurIPS18 GNN 96.6% Hard 180,000
SATNet ICML19 Relaxation 99.8% Easy 9,000

Hybrid IJCAI23 E-PLL 100% Hard 200
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Learning to play Visual Sudoku

Φ Neural net

Sudoku
Library

CFN
P(X|Φ)

X∗

toulbar2

Simultaneously learns to recognize digits and to play the Sudoku

SATNet Theoretical
(no corrections)

Hybrid

63.2 % 74.2% 94.1 ± 0.8%
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Learning to play Futoshiki

Sudoku is easy, only one type of constraints
I Our architecture directly learns how to play Futoshiki
I Includes both difference and inequality constraints
I Perfect solving, expected constraints learned
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Learning to design proteins: Effie

Recovering amino acid properties
I Correctly predicts 51% of amino acids from their environment

Zero-shot prediction of the effect of single mutations
I 79% accuracy on ATOM3D benchmark
I 0.4 correlation stability score/predicted energy (Rocklin et al. 2017)
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Optimizing a complete protein sequence

Full redesign of large proteins in the test set
I Guaranteed toulbar2 solution expensive
I Using LR-BCD instead (Durante et al. 2022)

Outperforms all-atoms XIXth-century physics
I Metric: Native Sequence Recovery rate (NSR)

Approach Rosetta Effie

NSR 17.9% 32.8%
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Effie vs. ProteinMPNN (Dauparas et al. 2022)

GPT-style Φ Autoregressive NN

PDB

P(Xi|Xi−1, . . . , X1,Φ)
X1, X2, . . .

Pros and cons
I heuristic guide instead of NP-hard solving
I Capacity to capture higher-order interactions
I Limited control for design constraints

ProteinMPNN Effie

NSR 45.9% 48.4%
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Predicting SARS-CoV2 variants (Colom et al. 2024)

RBD ACE2

Enumerate CoViD variants with a bounded number of mutations
I Uses only the initial March 2020 RBD-ACE2 structure + Effie/toulbar2
I Relies on (Montalbano et al. 2022) global constraint to bound mutations
I Predicts all the first SARS-CoV2 VoCs (α, β, γ, δ, κ, ι, λ and µ)
I In a few seconds, on one CPU-thread.

Not achievable by pure autoregressive models (ProteinMPNN)
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Design of an enzyme organizing platform

Design of an heteromeric hexamer

I Design and that self-assemble as but not as or
I Physics+logic: requires bi-level optimization (NPNP-complete) (Vucinic et al. 2020)
I Compare Effie+tb2 (NP-complete) with ProteinMPNN, bi-criteria (Buchet et al. 2024)
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How often is better than ?

Scoring → Effie PMPNN

Effie 100 % 99.5 %
PMPNN 3.0 % 82.6 %
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Conclusions

A Neural Net, a CFN and a CFN prover in a hybrid autoencoder
I A hybrid generic Generative AI that benefits from each component
I Neural Network: ideal to extract a representation of P(X|Φ) from raw inputs
I Represented as a CFN in a fully explorable and controllable latent layer
I Using decoding by discrete reasoning (toulbar2)
I All this with scalable training
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