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lceCube

Neutrino telescope
Located at the South Pole
Detector volume: 1 cubic kilometer

Oftentimes observes through Earth

Public dataset from Kagagle
Competition 130 million events
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lceCube Laboratory

Data is collected here and
sent by satellite to the data
warehouse at UW—Madison

Digital Optical
Module (DOM)

5,160 DOMs
deployed in the ice
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https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard
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https://www.youtube.com/watch?v=OXSqiPLn9CM
https://youtu.be/OXSqiPLn9CM?si=nnvKH0WpJgEWRn56

What do we mean by “foundation models™?

 |nitially, the term has been coined for models like BERT and GPT-3
2108.07258 “On the Opportunities and Risks of Foundation Models”

 Here, by foundational models we mean the models that are pretrained in a self-supervised way and
can be fine-tuned for downstream tasks.

supervised training self-supervised training

> <>

data model labels



https://arxiv.org/abs/2108.07258

Success of self-supervise training
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» Led to genAl revolution Year

source:
2211.04325 “Will we run out of data?

Limits of LLM scaling based on human-generated data”

© BERT - 3.3B tokens

1810.04805 “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”


https://arxiv.org/pdf/2211.04325

Success of self-supervise training

* No signs of stopping!

Power

Probably the single biggest constraint on the supply-side will
be power. Already, at nearer-term scales (1GW /2026 and espe-
cially 10GW /2028), power has become the binding constraint:
there simply isn’t much spare capacity, and power contracts
are usually long-term locked-in. And building, say, a new
gigawatt-class nuclear power plant takes a decade. (I'll won-
der when we'll start seeing things like tech companies buying
aluminum smelting companies for their gigawatt-class power

contracts.””)

https://situational-awareness.ai/
Leopold Aschenbrenner, June 2024

MICROSOFT / TECH / SCIENCE

Microsoft wants Three Mile Island to fuel

its Al power needs

Photo by Andrew Caballero-Reynolds / AFP via Getty Images

/ Microsoft has signed a 20-year
deal to exclusively access 835
megawatts of energy from a
nuclear plant.

By Tom Warren, a senior editor and author of Notepad, who has been covering all
things Microsoft, PC, and tech for over 20 years.

Sep 20, 2024 at 2:23 PM GMT+2

& f @ 69 Comments (69 New)

https://www.theverge.com/2024/9/20/24249770/



https://situational-awareness.ai/
https://www.theverge.com/2024/9/20/24249770/

Self-supervise training: Scaling Laws

Performance predictably improves with scale
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of comput used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

https://arxiv.org/pdf/2001.08361
Scaling Laws for Neural Language Models



https://arxiv.org/pdf/2001.08361

Self-supervised learning in physics

An exabyte of disk storage at CERN

CERN disk storage capacity passes the threshold of one million terabytes of disk space

29 SEPTEMBER, 2023 | By Tim Smith

 High quality synthetic data

 Real data is extremely abundant

» Scaling has not been tested yet

source.

https://home.cern/news/news/computing/exabyte-disk-storage-cern



https://home.cern/news/news/computing/exabyte-disk-storage-cern

Foundation models In particle physics

(a very incomplete list)

* Pre-training strategy using real particle collision data for event classification in collider physics
https://arxiv.org/abs/2312.06909
Tomoe Kishimoto, Masahiro Morinaga, Masahiko Saito, Junichi Tanaka

* Finetuning Foundation Models for Joint Analysis Optimization
https://arxiv.org/abs/2401.13536
Matthias Vigl, Nicole Hartman, Lukas Heinrich

« Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models
https://arxiv.org/abs/2401.13537
Lukas Heinrich, Tobias Golling, Michael Kagan, Samuel Klein, Matthew Leigh, Margarita Osadchy, John Andrew Raine

« A Language Model for Particle Tracking
https://arxiv.org/abs/2402.10239
Andris Huang, Yash Melkani, Paolo Calafiura, Alina Lazar, Daniel Thomas Murnane, Minh-Tuan Pham, Xiangyang Ju

« Omnidet-a: The first cross-task foundation model for particle physics
https://arxiv.org/abs/2403.05618
Joschka Birk, Anna Hallin, Gregor Kasieczka

 Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models
https://arxiv.org/abs/2403.07066
Philip Harris, Michael Kagan, Jeffrey Krupa, Benedikt Maier, Nathaniel Woodward

« OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks
https://arxiv.org/abs/2404.16091
Vinicius Mikuni, Benjamin Nachman



https://arxiv.org/abs/2312.06909
https://arxiv.org/abs/2401.13536
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2404.16091

Challenges of self-supervise learning in particle physics

BERT

(Bidirectional Encoder Representations from Transformers) A Jet foundation model

predict the distribution of a token from a discrete set How to predict a continuous 4-vector?

o fornf] o
T 1~ 1 T 1 1
A jet foundation model

BERT (masked language model)

o o (S o 2 o o (S o

Usually lossy discretization:
- VQ-VAE (2401.13537, 2403.05618)
- pixelization (2402.10239)

10



Challenges of self-supervise learning in particle physics

« How to predict a continuous 4-vector?

IceCub%
e Usually lossy discretization: 50meters T
- VQ-VAE (2401.13537, 2403.05618)
- pixelization (2402.10239) ‘ IceCube Array
86 strings, 60 sensors each
5,160 optical sensors
* How to sort 4-vectors? IR ot
1,450 meters| il ié‘siif i DeepCor'e. .
H e 6 strings optimized
.| for low energies
e
° |CeCube Eiffel Tower
. 324 meters
2,450 meters

e 5160 DOMs — natural “tokenization” FS IR

* Pulses have timestamps

11



lceCube event

Example event from the dataset:
(azimuth = 4.86 rad, zenith = 1.96 rad)

auxiliary == False auxiliary == True
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lceCube Embedding

DOM 1334 DOM 1934 DOM 2534

DOM 1335 DOM 1935 DOM 2535 DOM 4575

DOM 1336 DOM 1936 DOM 3136 DOM 4576

DOM 4577

/ DOM 2537 DOM 3137

DOM 1338

DOM 1938

DOM 2538 DOM 3138 DOM 4578

(1337) (2536) (3135)
Ly Iy I3
40 q> q3

\aUX()) kaUX2) \aux3)

pulses (arranged by time)
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pulse embedding

i €i,0
I D DOM embedding
i ¢ = MASK ] €1
PAD

! | > €; 128
q; |

VZ,O
auxl l; 1% 1
vi=W| ¢ [+b .
Vi128
No position data!
ooue

) ) () G e ) ()

time-series (padded to fixed length)



Pretraining

predict
total charge

to calculate DOM loss to calculate DOM loss

1 1 U1 I 1

PolarBERT

TITI

@eeee ol

- 5 padded to seq_len pulses
time

14



Pretraining: DOM loss

 The detection process is inherently stochastic
 We cannot predict the next DOM with certainty

e Similarly to LLMs, we use cross-entropy
(but other option are possible: Earth Mover's Distance, Chamfer distance)

|
DOM-loss: L = N 2 log(p;), the sum over N masked doms
i=1

 Use only aux=false (HLC) pulses! aux=true pulses are impossible to predict.

15



Pretraining: regression loss

The model has to learn how to collect useful information in [CLS] embedding
for the future use on downstream tasks.

We need some feature that is not directly accessible to the model, but can be obtained from

the data (no labels)

Candidates: the total charge of the event, center of charge

102

We subsample the events, and the charge is provided as a log

Charge prediction loss: MSE( log( total charge) )

101 -

109 -

16

“ Predicted charge
True charge

3
Log(charge)

-

4 5




PolarBERT: Foundation Model For IceCube

Backbone: transformer (could be GRU, Mamba)
Pretraining:

 Subsample events to seq_len (currently 128)
e input: (DOM embedding) @ (projection of features)

 Jloss function = DOM-loss + 4 X charge-prediction-loss
Fine-tuning for downstream tasks

lceCube kaggle MC data for both pretraining and finetuning
(studies using real data can be only published by the
collaboration)

17

— flash-mss-100Mevents_240909-033524 train/dom_loss == flash-mss-100Mevents_240909-033524 val/dom_loss

100 million events

BERT: 3,300M tokens
PolarBERT: 127,000M “tokens”
(100M events x 127 pulses)


https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard

Interpreting the DOM Loss

1o
— Z log(p;)

LCE__N

pulse # 40 pulse # 50 - Event DOMs
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some uncertainty about the string and the DOM
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Model Size Scaling

PolarBERT LLMs
2.375 x 10% log(L) = -0.0168 * log(N) + 0.8739 5 6 - —— | =(N/8.8-1013)-0.076
2.35x 109 4.8
§ 2.325 x 109 4.0 -
-l
2 2.3x100
5 3.2
5 2.275 x 10°-
S
S 2.25x10° 2.4
2.225 x 10°; . . .
10° 107 10°
2.2 x10°;
- — — Parameters
Model Size (millions of parameters) non-embedding

Models trained to convergence

Models trained on 10M neutrino events Kaplan et all, 2020
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Mean Angular Error

1.30-

=
N
U
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Finetuning (Directional Reconstruction)

—e— Fine-Tuning
—eo— From Scratch

- 10°
Number of Events
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Pretrained model can be
successfully fine-tuned on a
downstream task

We add a “prediction head”: an MLP
to the [CLS] embedding output

Train resulting model with direction
labels

Fine-tuning is sample efficient

Allows to experiment with the
architecture of the fine-tuned model



Future Steps

 Prometheus data for fine tuning (different labels)
A few million events

 Dataset size scaling — what are the returns from scaling in particle physics?
* Pretraining for more than one epoch (cf 2305.16264 “Scaling Data-Constrained Language Models™ )

* A more systematic study to address specific architecture choices

21


https://arxiv.org/abs/2304.14526

Conclusions

 The hybrid embedding approach and masking strategy are effective in capturing relevant
information from unlabeled data.

* A clear scaling law in pre-training performance, similar to that seen in large language models.

* There are significant improvements in sample efficiency and performance when fine-tuning the pre-
trained model compared to training from scratch.

22



