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IceCube
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• Neutrino telescope


• Located at the South Pole


• Detector volume: 1 cubic kilometer


• Oftentimes observes through Earth


• Public dataset from Kaggle 
Competition 130 million events

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard


IceCube event
https://youtu.be/OXSqiPLn9CM?si=nnvKH0WpJgEWRn56 

https://www.youtube.com/watch?v=OXSqiPLn9CM
https://youtu.be/OXSqiPLn9CM?si=nnvKH0WpJgEWRn56


What do we mean by “foundation models”?

• Initially, the term has been coined for models like BERT and GPT-3 
2108.07258 “On the Opportunities and Risks of Foundation Models”


• Here, by foundational models we mean the models that are pretrained in a self-supervised way and 
can be fine-tuned for downstream tasks.
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https://arxiv.org/abs/2108.07258


Success of self-supervise training
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• Labeled data is limited


• Unlabeled data is abundant 
(text, image, video)


• Led to genAI revolution

Outside physics:
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2211.04325 “Will we run out of data? 
Limits of LLM scaling based on human-generated data”

1810.04805  “BERT: Pre-training of Deep Bidirectional  
Transformers for Language Understanding”
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Success of self-supervise training
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https://situational-awareness.ai/  
Leopold Aschenbrenner, June 2024

• No signs of stopping!

https://www.theverge.com/2024/9/20/24249770/ 

https://situational-awareness.ai/
https://www.theverge.com/2024/9/20/24249770/


Self-supervise training: Scaling Laws
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https://arxiv.org/pdf/2001.08361 
Scaling Laws for Neural Language Models

Performance predictably improves with scale

https://arxiv.org/pdf/2001.08361


Self-supervised learning in physics
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• High quality synthetic data


• Real data is extremely abundant


• Scaling has not been tested yet

source:  
https://home.cern/news/news/computing/exabyte-disk-storage-cern 

https://home.cern/news/news/computing/exabyte-disk-storage-cern


Foundation models in particle physics 
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• Pre-training strategy using real particle collision data for event classification in collider physics 
https://arxiv.org/abs/2312.06909  
Tomoe Kishimoto, Masahiro Morinaga, Masahiko Saito, Junichi Tanaka 

• Finetuning Foundation Models for Joint Analysis Optimization 
https://arxiv.org/abs/2401.13536  
Matthias Vigl, Nicole Hartman, Lukas Heinrich 

• Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models 
https://arxiv.org/abs/2401.13537  
Lukas Heinrich, Tobias Golling, Michael Kagan, Samuel Klein, Matthew Leigh, Margarita Osadchy, John Andrew Raine


• A Language Model for Particle Tracking 
https://arxiv.org/abs/2402.10239  
Andris Huang, Yash Melkani, Paolo Calafiura, Alina Lazar, Daniel Thomas Murnane, Minh-Tuan Pham, Xiangyang Ju 

• OmniJet-α: The first cross-task foundation model for particle physics 
https://arxiv.org/abs/2403.05618   
Joschka Birk, Anna Hallin, Gregor Kasieczka 

• Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models 
https://arxiv.org/abs/2403.07066 
Philip Harris, Michael Kagan, Jeffrey Krupa, Benedikt Maier, Nathaniel Woodward  

• OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks 
https://arxiv.org/abs/2404.16091  
Vinicius Mikuni, Benjamin Nachman

(a very incomplete list)

https://arxiv.org/abs/2312.06909
https://arxiv.org/abs/2401.13536
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2404.16091


Challenges of self-supervise learning in particle physics
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BERT  
(Bidirectional Encoder Representations from Transformers)

predict the distribution of a token from a discrete set

A jet foundation model

Graph Neural [MASK] and

Graph Neural Networks and

BERT (masked language model)

…
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…

…

…

…

How to predict a continuous 4-vector?

Usually lossy discretization: 
- VQ-VAE (2401.13537, 2403.05618) 
- pixelization (2402.10239)



Challenges of self-supervise learning in particle physics
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• How to predict a continuous 4-vector?


• Usually lossy discretization: 
- VQ-VAE (2401.13537, 2403.05618) 
- pixelization (2402.10239)


• How to sort 4-vectors? 

• IceCube 


• 5160 DOMs — natural “tokenization”


• Pulses have timestamps 



IceCube event



IceCube Embedding
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Pretraining
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Pretraining: DOM loss
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• The detection process is inherently stochastic


• We cannot predict the next DOM with certainty


• Similarly to LLMs, we use cross-entropy  
(but other option are possible: Earth Mover's Distance, Chamfer distance)


• DOM-loss: , the sum over  masked doms


• Use only aux=false (HLC) pulses! aux=true pulses are impossible to predict.

LCE = −
1
N

N

∑
i=1

log(pi) N



Pretraining: regression loss
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• The model has to learn how to collect useful information in [CLS] embedding 
for the future use on downstream tasks.


• We need some feature that is not directly accessible to the model, but can be obtained from 
the data (no labels)


• Candidates: the total charge of the event, center of charge


• We subsample the events, and the charge is provided as a log


• Charge prediction loss: MSE( ( total charge) )log



PolarBERT: Foundation Model For IceCube
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• Backbone: transformer  (could be GRU, Mamba)


• Pretraining: 


• Subsample events to seq_len (currently 128)


• input: (DOM embedding)  (projection of features)


• loss function = DOM-loss +  charge-prediction-loss


• Fine-tuning for downstream tasks


• IceCube kaggle MC data for both pretraining and finetuning 
(studies using real data can be only published by the 
collaboration)

⊕

λ ×
100 million events

BERT:           3,300M     tokens 
PolarBERT:  127,000M “tokens” 
(100M events x 127 pulses)

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/leaderboard


Interpreting the DOM Loss
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LCE = −
1
N

N

∑
i=1

log(pi)

some uncertainty about the string and the DOM



Model Size Scaling
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Models trained to convergence 
Kaplan et all, 2020

LLMsPolarBERT

Models trained on 10M neutrino events



Finetuning (Directional Reconstruction)
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• Pretrained model can be 
successfully fine-tuned on a 
downstream task


• We add a “prediction head”: an MLP 
to the [CLS] embedding output


• Train resulting model with direction 
labels


• Fine-tuning is sample efficient


• Allows to experiment with the 
architecture of the fine-tuned model



Future Steps

21

• Prometheus data for fine tuning (different labels) 
A few million events


• Dataset size scaling — what are the returns from scaling in particle physics?


• Pretraining for more than one epoch (cf 2305.16264 “Scaling Data-Constrained Language Models” )


• A more systematic study to address specific architecture choices

https://arxiv.org/abs/2304.14526


Conclusions
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• The hybrid embedding approach and masking strategy are effective in capturing relevant 
information from unlabeled data.


•  A clear scaling law in pre-training performance, similar to that seen in large language models.


• There are significant improvements in sample efficiency and performance when fine-tuning the pre-
trained model compared to training from scratch.


