

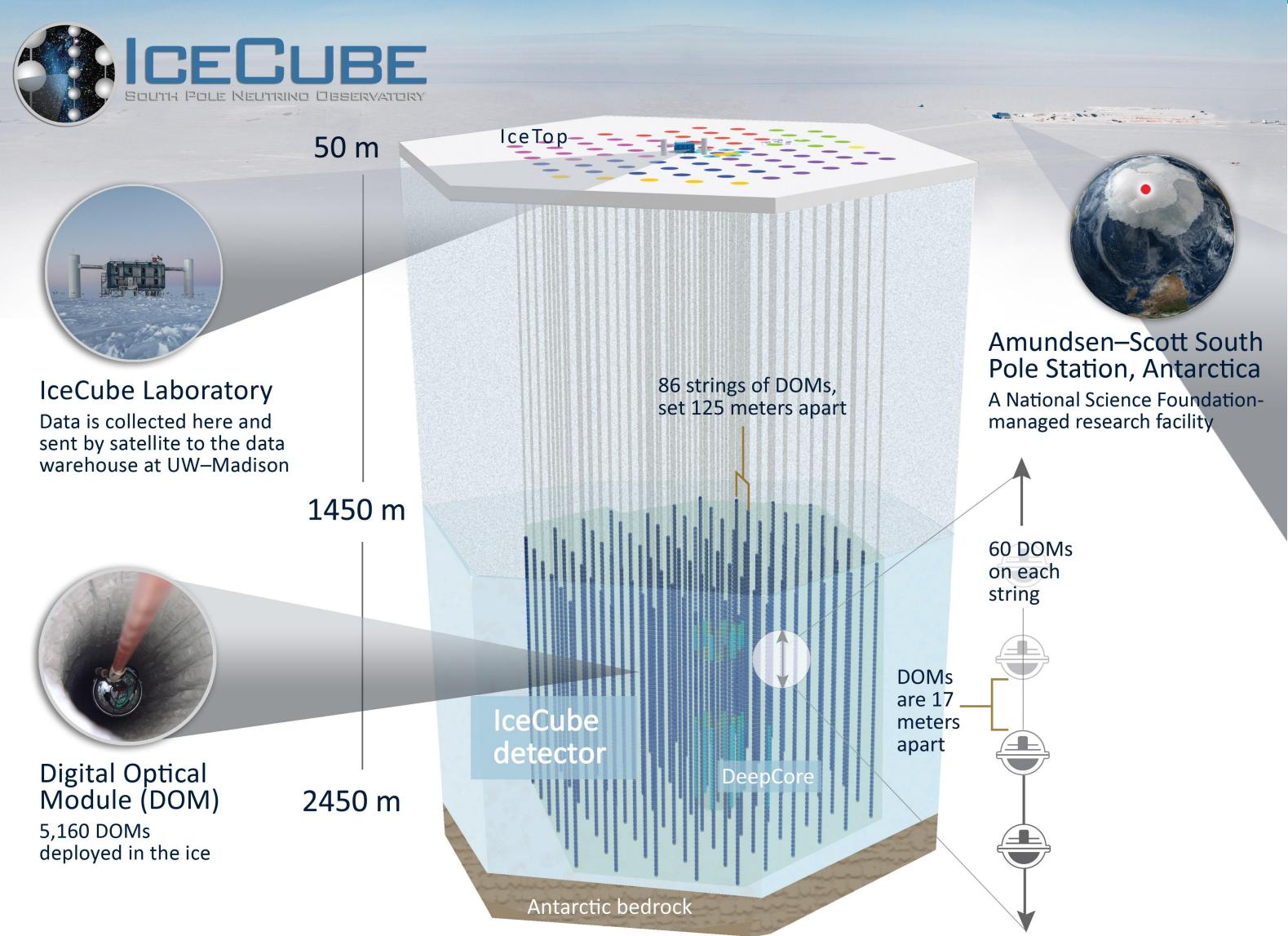
Co-financed by the Connecting Europe Facility of the European Union

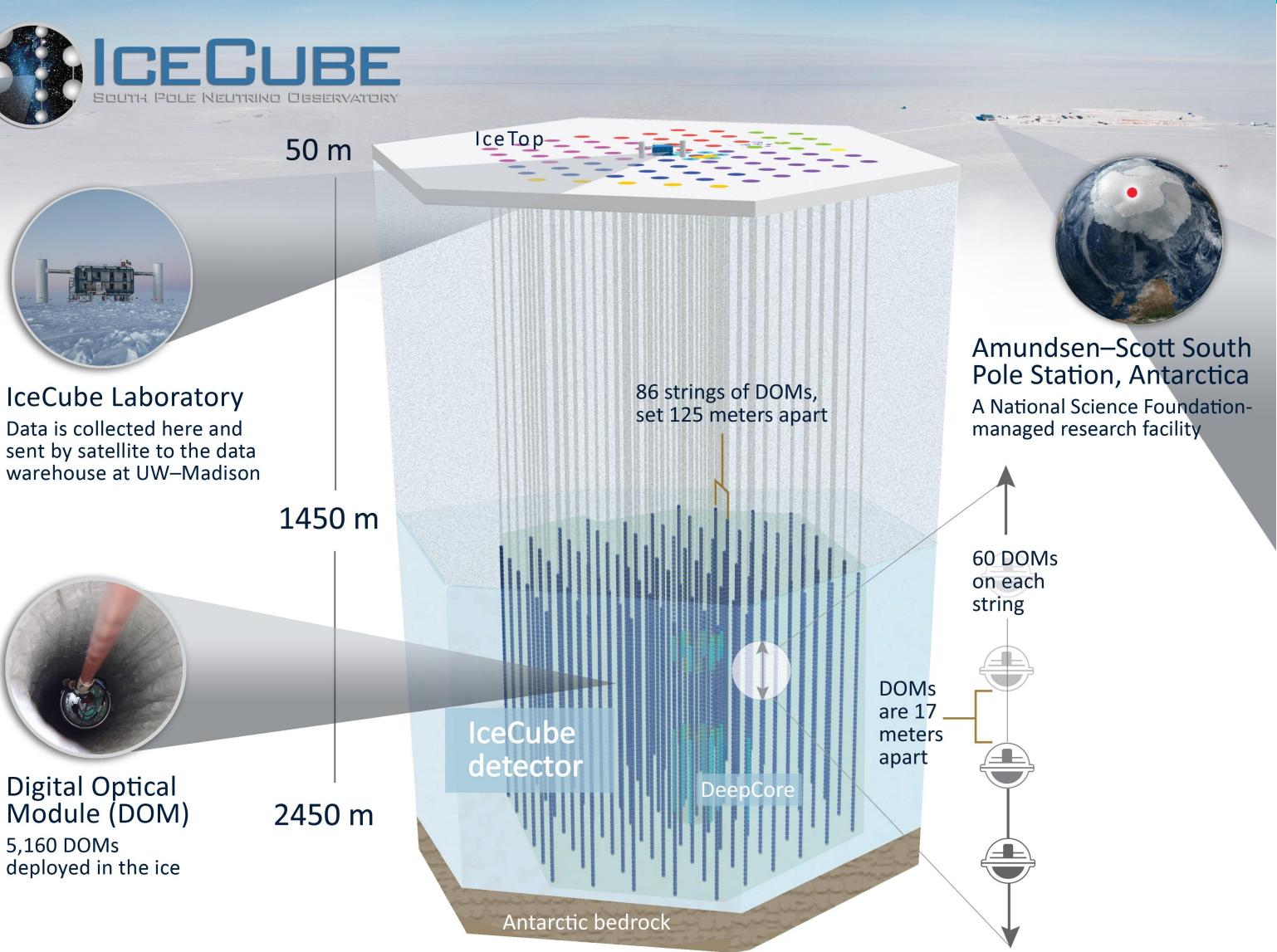
INTERACTIONS

PolarBERT: A Foundation Model for IceCube

Inar Timiryasov, Jean-Loup Tastet, Oleg Ruchayskiy Niels Bohr Institute and DIKU, University of Copenhagen

Heterogeneous Data and Large Representation Models in Science 2024-09-30, Toulouse





- Neutrino telescope
- Located at the South Pole lacksquare
- Detector volume: 1 cubic kilometer
- Oftentimes observes through Earth
- Public dataset from <u>Kaggle</u> **Competition 130 million events**

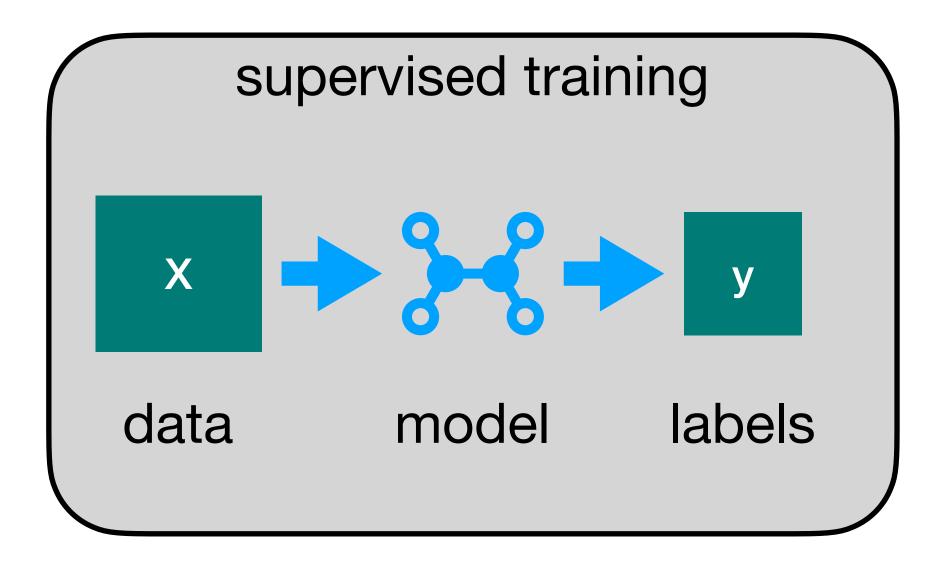
IceCube event

https://youtu.be/OXSqiPLn9CM?si=nnvKH0WpJgE\

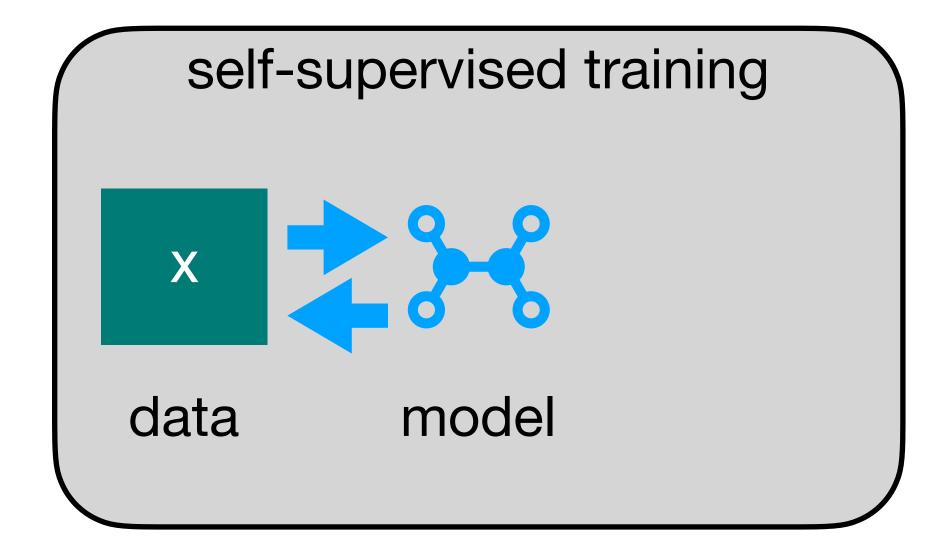
.

What do we mean by "foundation models"?

- Initially, the term has been coined for models like BERT and GPT-3 lacksquare2108.07258 "On the Opportunities and Risks of Foundation Models"
- can be fine-tuned for downstream tasks.



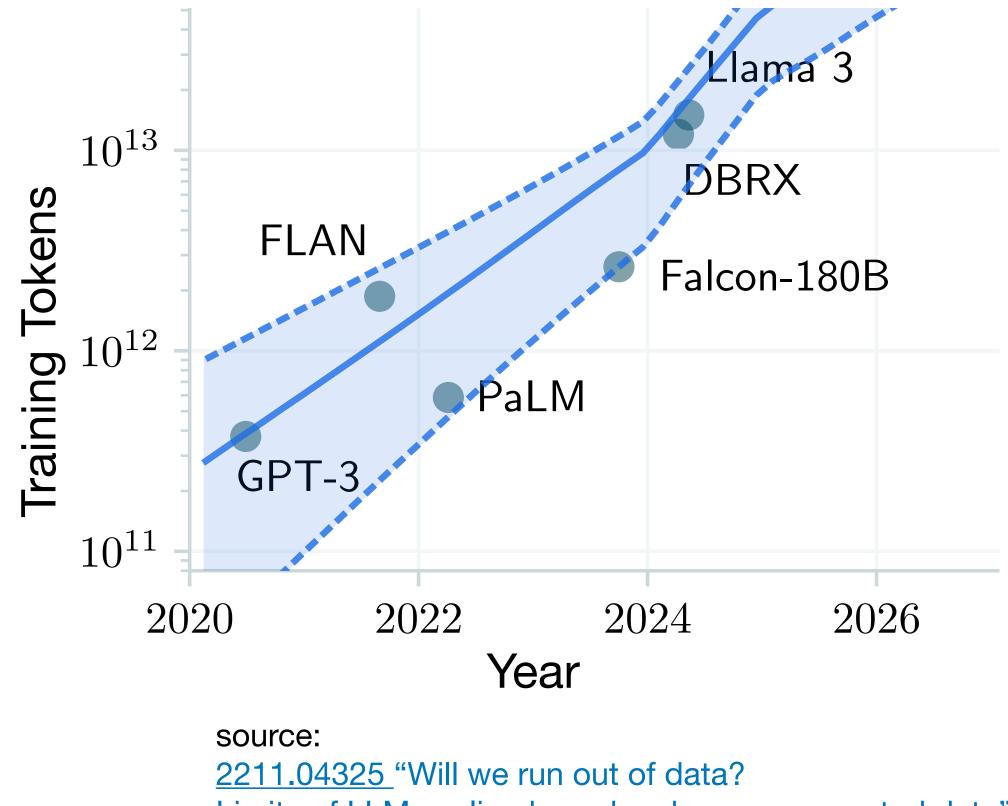
• Here, by foundational models we mean the models that are pretrained in a self-supervised way and



Success of self-supervise training

Outside physics:

- Labeled data is limited \bullet
- Unlabeled data is abundant \bullet (text, image, video)
- Led to genAl revolution lacksquare



Limits of LLM scaling based on human-generated data"

BERT - 3.3B tokens

1810.04805 "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"

Success of self-supervise training

• No signs of stopping!

Power

Probably the single biggest constraint on the supply-side will be power. Already, at nearer-term scales (1GW/2026 and especially 10GW/2028), power has become the binding constraint: there simply isn't much spare capacity, and power contracts are usually long-term locked-in. And building, say, a new gigawatt-class nuclear power plant takes a decade. (I'll wonder when we'll start seeing things like tech companies buying aluminum smelting companies for their gigawatt-class power contracts.⁵⁷)

https://situational-awareness.ai/ Leopold Aschenbrenner, June 2024

MICROSOFT / TECH / SCIENCE

Microsoft wants Three Mile Island to fuel its AI power needs

/ Microsoft has signed a 20-year deal to exclusively access 835 megawatts of energy from a nuclear plant.

By Tom Warren, a senior editor and author of Notepad, who has been covering all things Microsoft, PC, and tech for over 20 years. Sep 20, 2024 at 2:23 PM GMT+2

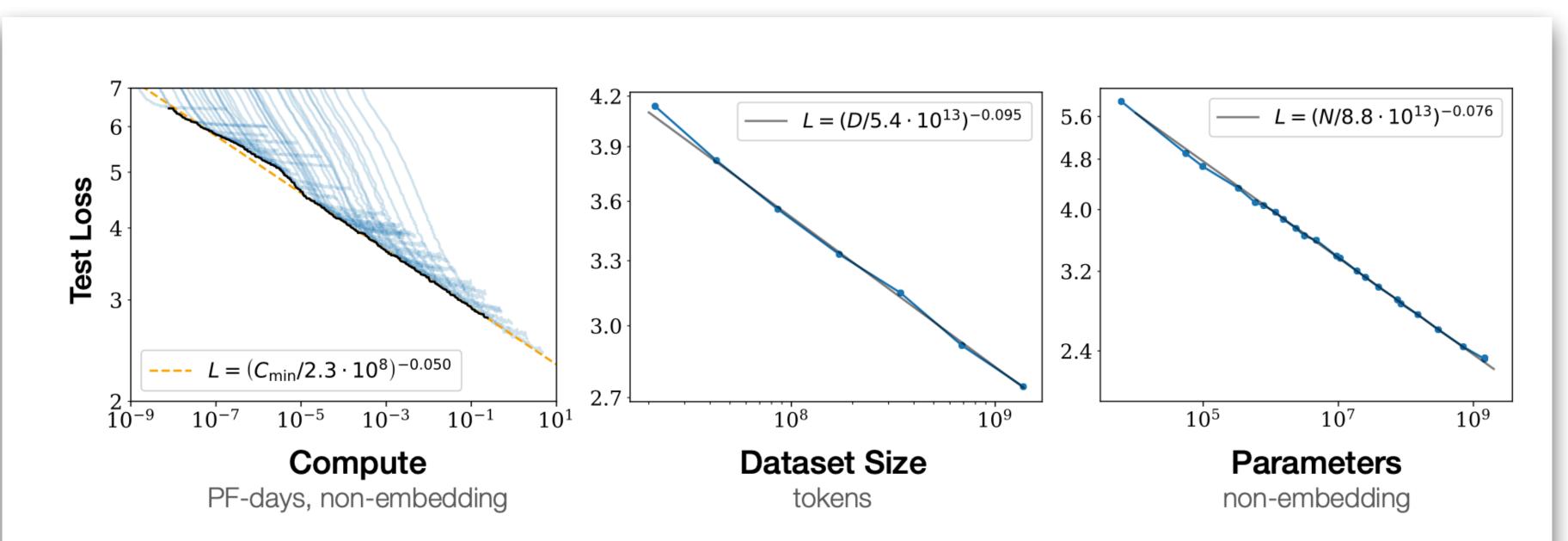
69 Comments (69 New)

Photo by Andrew Caballero-Reynolds / AFP via Getty Images

8)(f)

Self-supervise training: Scaling Laws

Performance predictably improves with scale



bottlenecked by the other two.

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not

> https://arxiv.org/pdf/2001.08361 Scaling Laws for Neural Language Models

Self-supervised learning in physics

- High quality synthetic data
- Real data is extremely abundant
- Scaling has not been tested yet

An exabyte of disk storage at CERN

CERN disk storage capacity passes the threshold of one million terabytes of disk space

29 SEPTEMBER, 2023 | By Tim Smith

A fraction of the 111 000 devices that form CERN's data storage capacity. (Image: CERN

source: https://home.cern/news/news/computing/exabyte-disk-storage-cern

Foundation models in particle physics

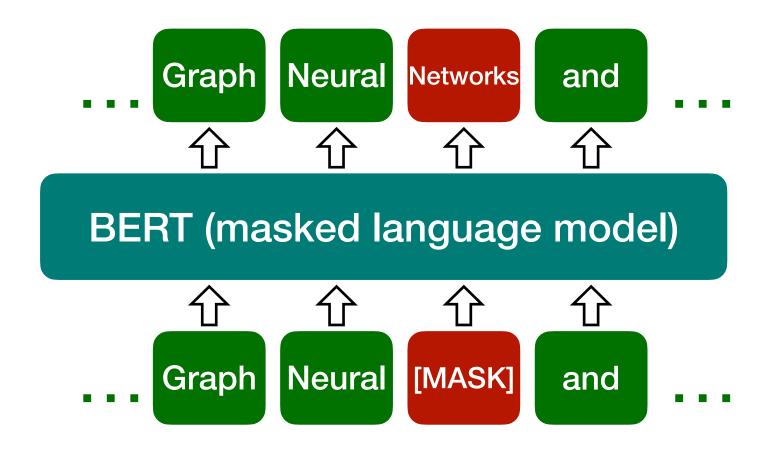
- Pre-training strategy using real particle collision data for event classification in collider physics https://arxiv.org/abs/2312.06909 Tomoe Kishimoto, Masahiro Morinaga, Masahiko Saito, Junichi Tanaka
- **Finetuning Foundation Models for Joint Analysis Optimization** https://arxiv.org/abs/2401.13536 Matthias Vigl, Nicole Hartman, Lukas Heinrich
- Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models https://arxiv.org/abs/2401.13537 Lukas Heinrich, Tobias Golling, Michael Kagan, Samuel Klein, Matthew Leigh, Margarita Osadchy, John Andrew Raine
- A Language Model for Particle Tracking https://arxiv.org/abs/2402.10239 Andris Huang, Yash Melkani, Paolo Calafiura, Alina Lazar, Daniel Thomas Murnane, Minh-Tuan Pham, Xiangyang Ju
- **OmniJet-a:** The first cross-task foundation model for particle physics https://arxiv.org/abs/2403.05618 Joschka Birk, Anna Hallin, Gregor Kasieczka
- **Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models** https://arxiv.org/abs/2403.07066 Philip Harris, Michael Kagan, Jeffrey Krupa, Benedikt Maier, Nathaniel Woodward
- **OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks** https://arxiv.org/abs/2404.16091 Vinicius Mikuni, Benjamin Nachman

(a very incomplete list)

Challenges of self-supervise learning in particle physics

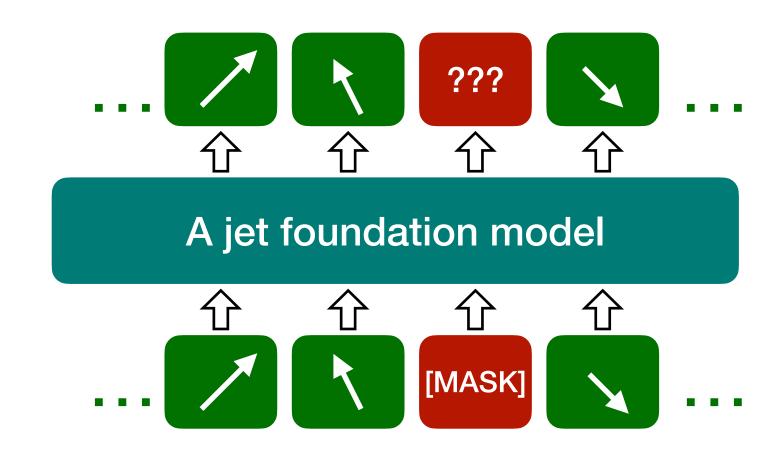
BERT (Bidirectional Encoder Representations from Transformers)

predict the distribution of a token from a discrete set



A jet foundation model

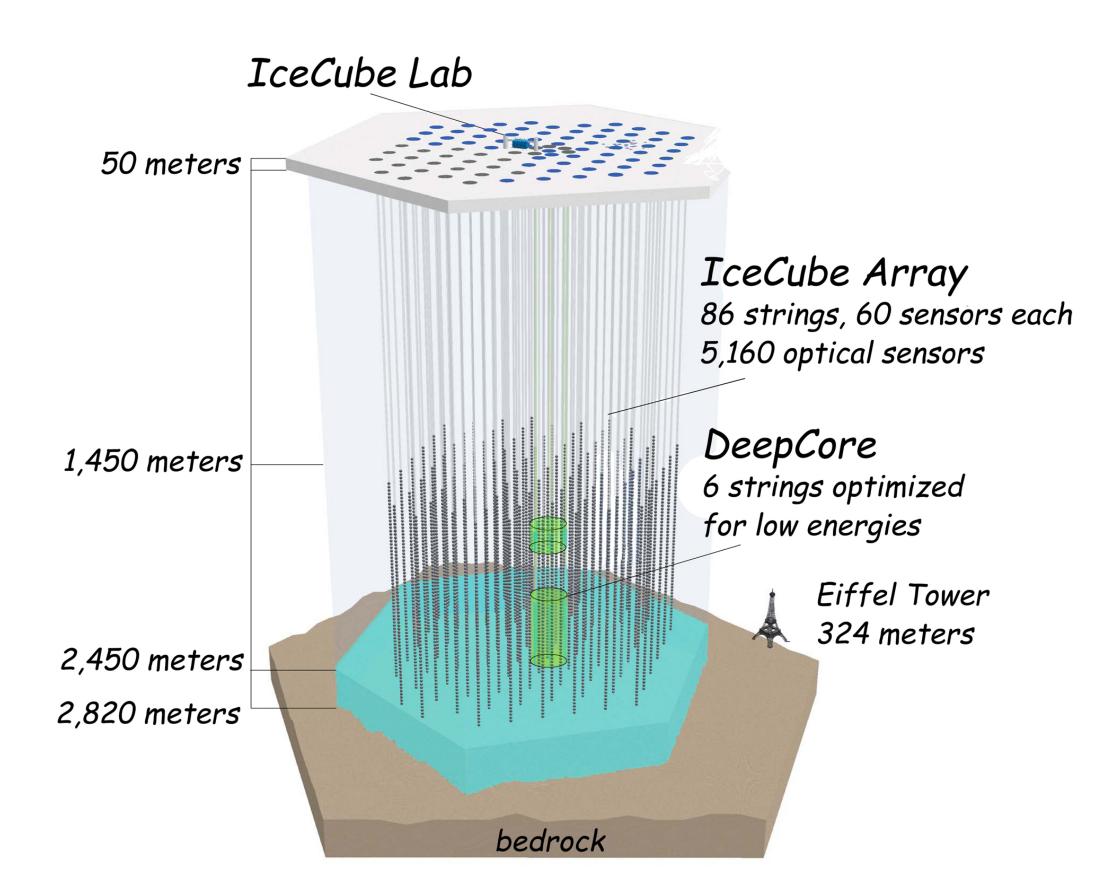
How to predict a continuous 4-vector?



Usually lossy discretization: - VQ-VAE (2401.13537, 2403.05618) - pixelization (2402.10239)

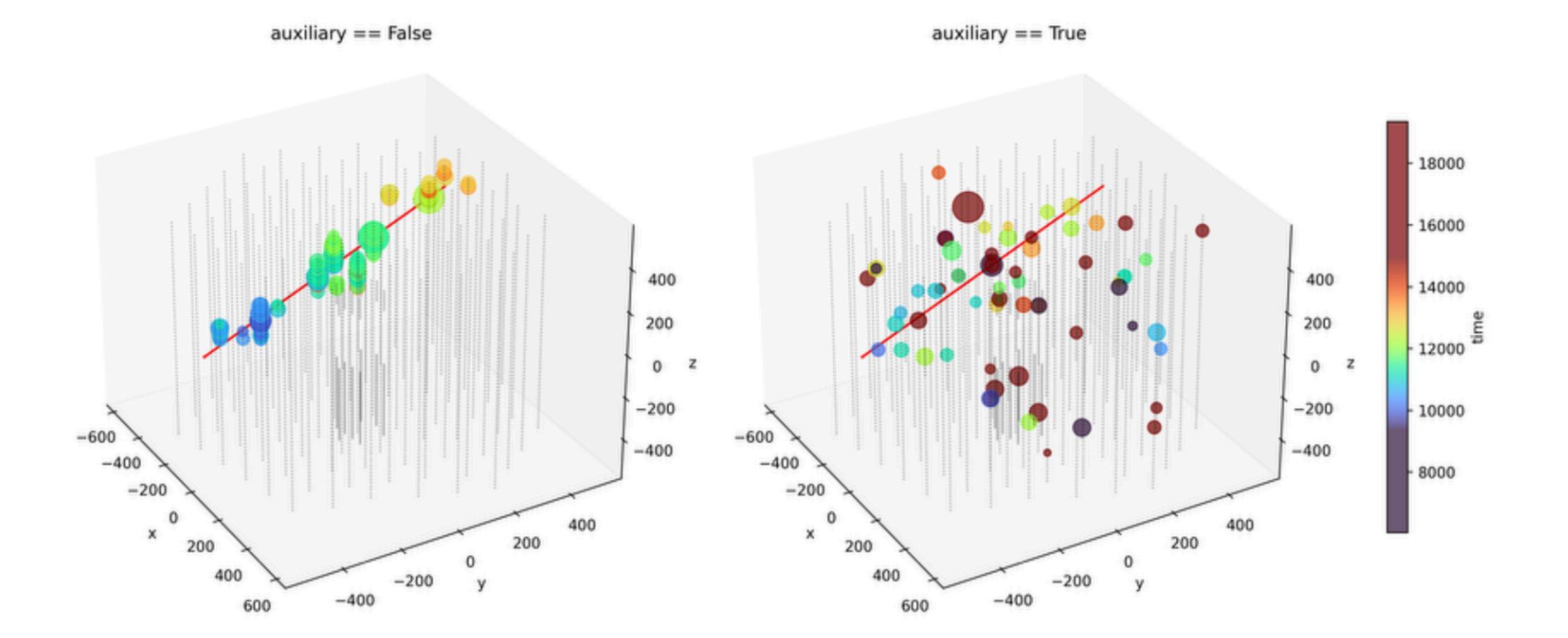
Challenges of self-supervise learning in particle physics

- How to predict a continuous 4-vector?
- Usually lossy discretization:
 VQ-VAE (2401.13537, 2403.05618)
 pixelization (2402.10239)
- How to sort 4-vectors?
- IceCube
 - 5160 DOMs natural "tokenization"
 - Pulses have timestamps

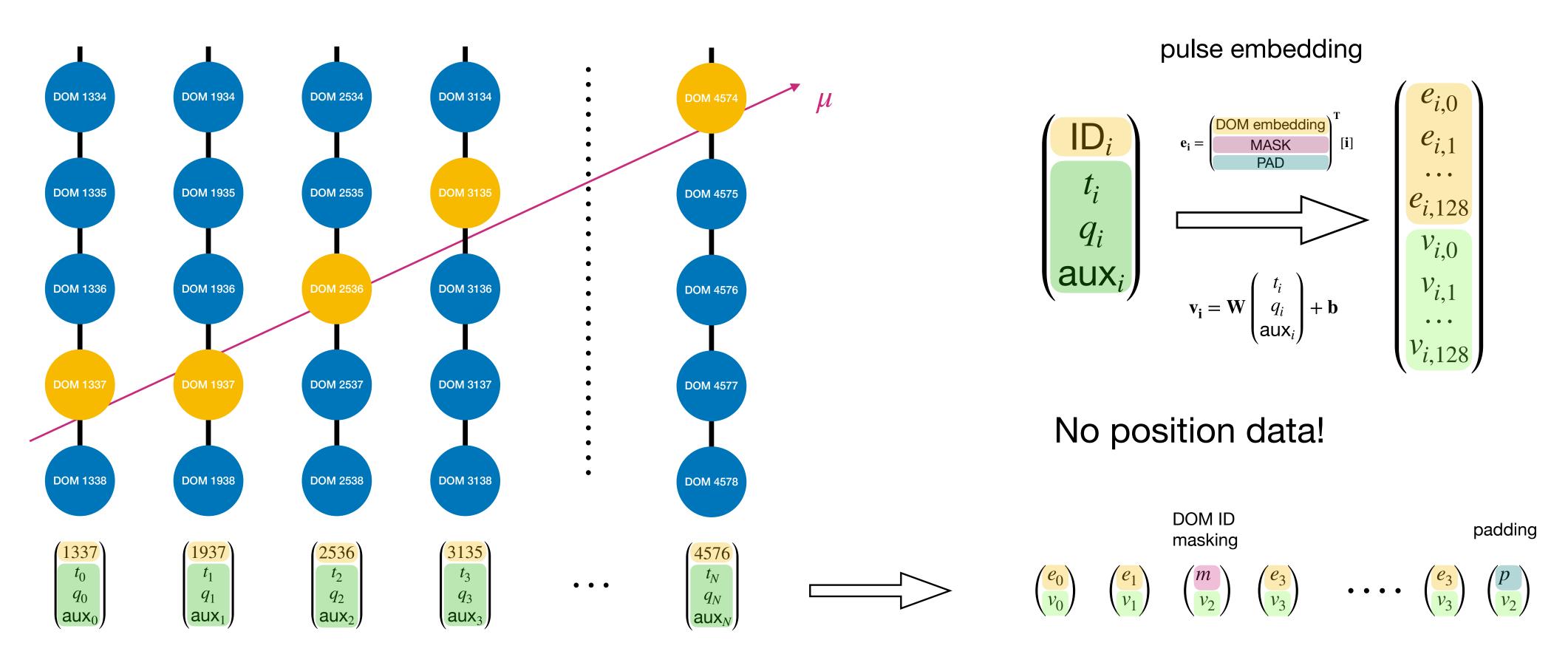


IceCube event

Example event from the dataset: (azimuth = 4.86 rad, zenith = 1.96 rad)



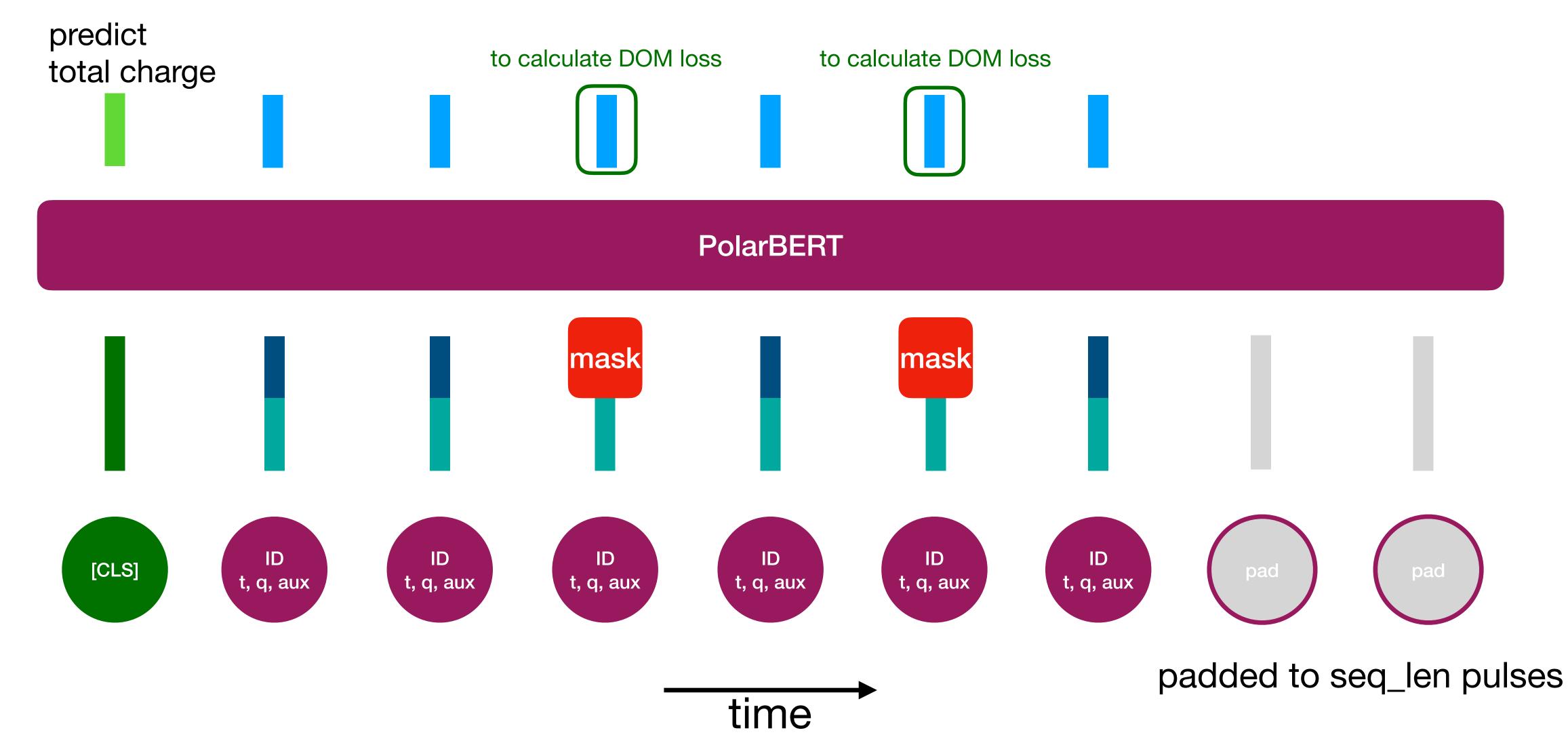
IceCube Embedding



pulses (arranged by time)

time-series (padded to fixed length)

Pretraining



Pretraining: DOM loss

- The detection process is inherently stochastic ullet
- We cannot predict the next DOM with certainty lacksquare
- Similarly to LLMs, we use cross-entropy ullet(but other option are possible: Earth Mover's Distance, Chamfer distance)

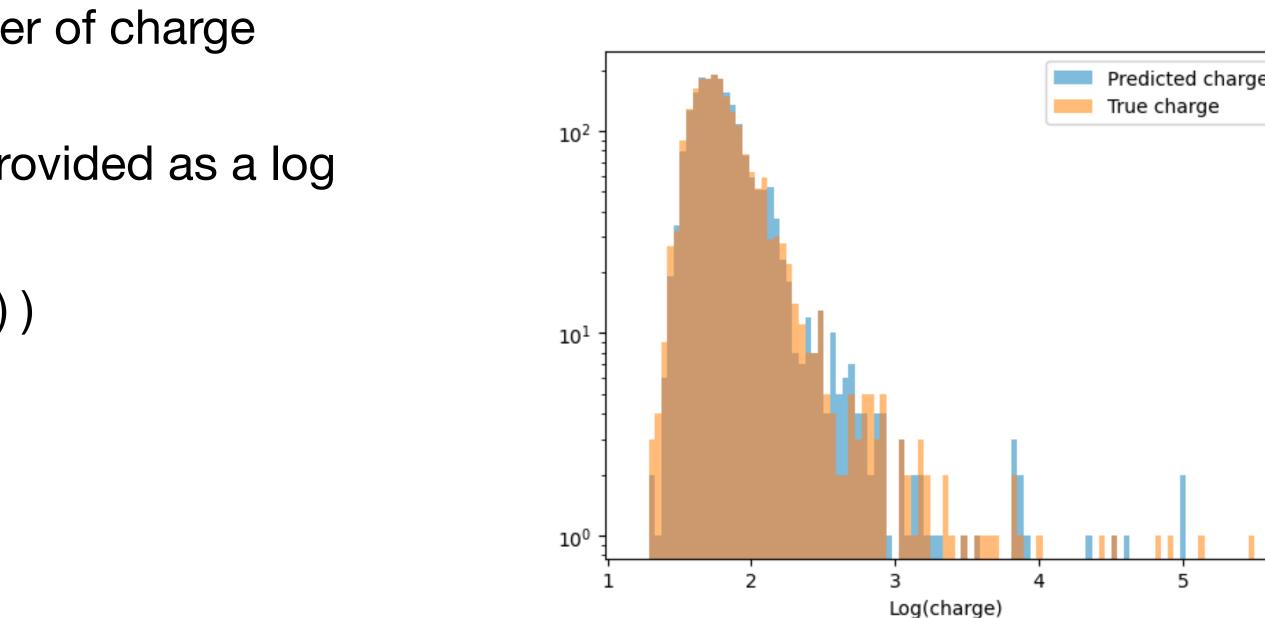
• DOM-loss:
$$L_{CE} = -\frac{1}{N} \sum_{i=1}^{N} \log(p_i)$$
, the sum of

Use only aux=false (HLC) pulses! aux=true pulses are impossible to predict. lacksquare

over N masked doms

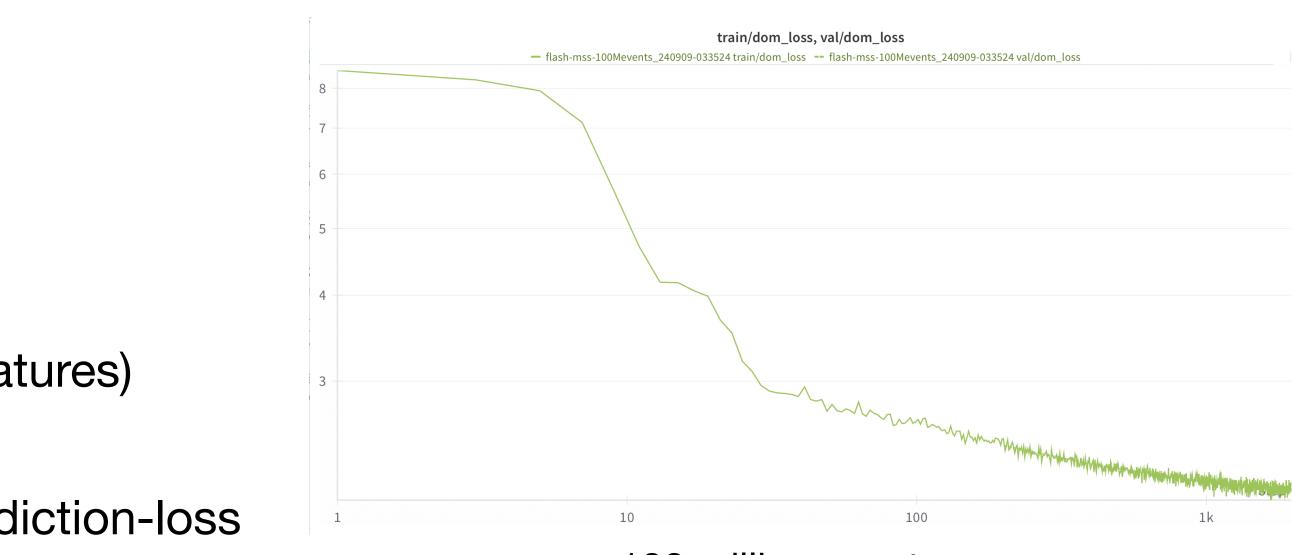
- The model has to learn how to collect useful information in [CLS] embedding for the future use on downstream tasks.
- We need some feature that is not directly accessible to the model, but can be obtained from the data (no labels)
- Candidates: the total charge of the event, center of charge
- We subsample the events, and the charge is provided as a log
- Charge prediction loss: MSE(log(total charge))

Pretraining: regression loss



PolarBERT: Foundation Model For IceCube

- Backbone: transformer (could be GRU, Mamba)
- Pretraining:
 - Subsample events to seq_len (currently 128)
 - input: (DOM embedding) \bigoplus (projection of features)
 - loss function = DOM-loss + $\lambda \times$ charge-prediction-loss
- Fine-tuning for downstream tasks
- <u>IceCube kaggle MC data for both pretraining and finetuning</u> (studies using real data can be only published by the collaboration)

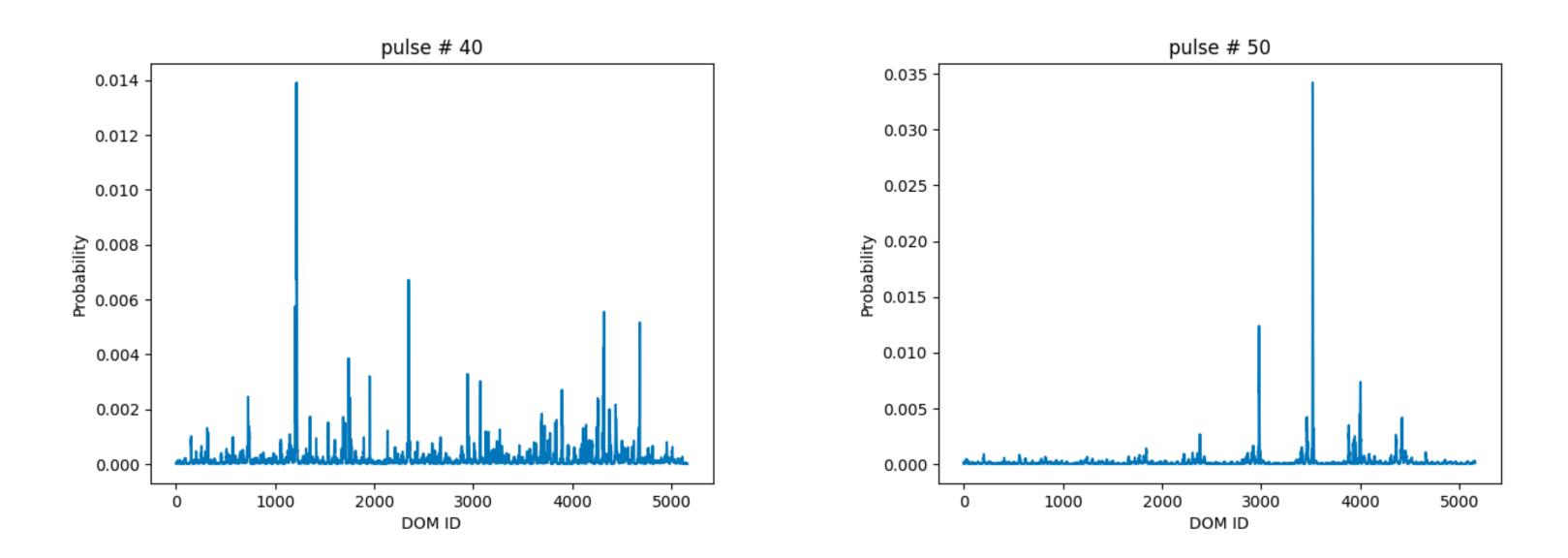


100 million events

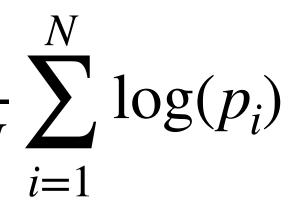
BERT: 3,300M tokens PolarBERT: 127,000M "tokens" (100M events x 127 pulses)

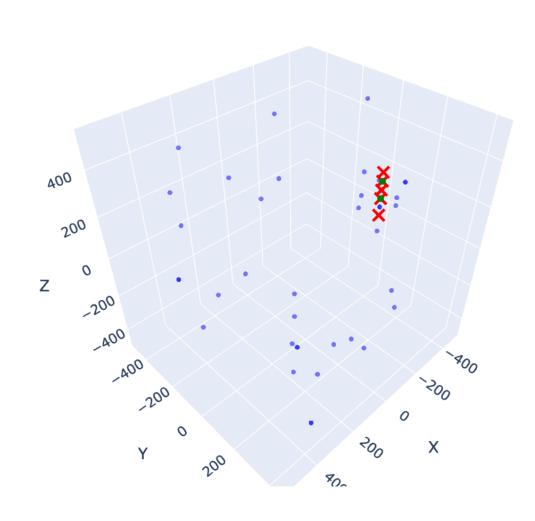
Interpreting the DOM Loss

 $L_{CE} = -\frac{1}{N}$



some uncertainty about the string and the DOM

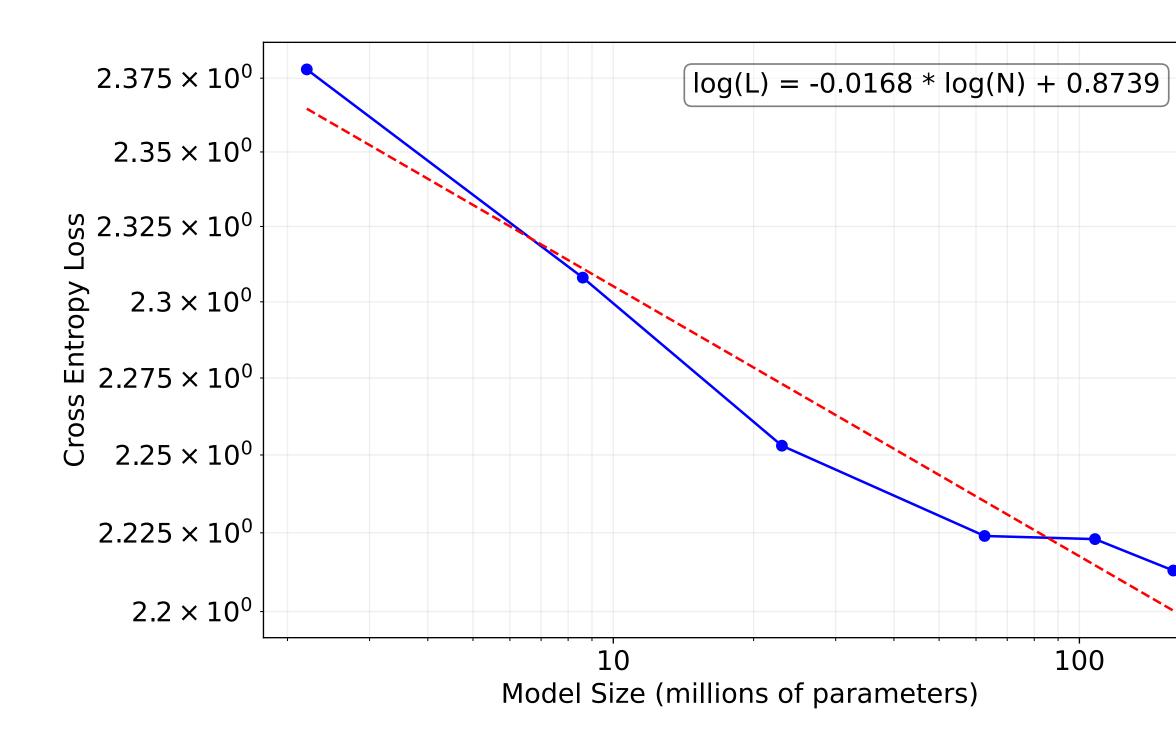




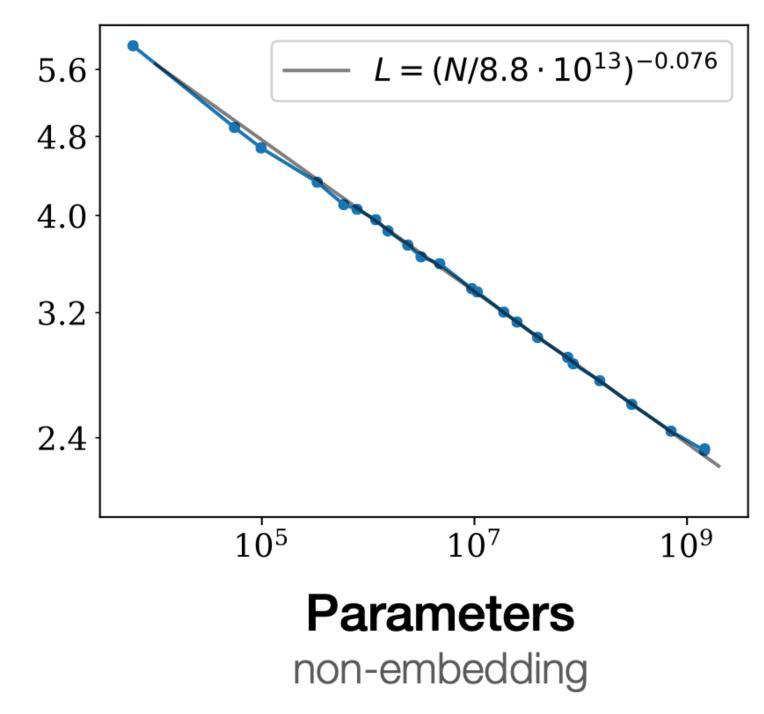
Event DOMs
Masked DOMs
Predicted DOMs

Model Size Scaling

PolarBERT



Models trained on 10M neutrino events



Models trained to convergence Kaplan et all, 2020

Finetuning (Directional Reconstruction)



- Pretrained model can be lacksquaresuccessfully fine-tuned on a downstream task
- We add a "prediction head": an MLP ulletto the [CLS] embedding output
- Train resulting model with direction labels
- Fine-tuning is sample efficient ullet
- Allows to experiment with the \bullet architecture of the fine-tuned model

- Prometheus data for fine tuning (different labels) \bullet A few million events
- Dataset size scaling what are the returns from scaling in particle physics? \bullet
- A more systematic study to address specific architecture choices

• Pretraining for more than one epoch (cf 2305.16264 "Scaling Data-Constrained Language Models")

- The hybrid embedding approach and masking strategy are effective in capturing relevant information from unlabeled data.
- A clear scaling law in pre-training performance, similar to that seen in large language models. \bullet
- There are significant improvements in sample efficiency and performance when fine-tuning the pretrained model compared to training from scratch.

