

saclay

• Le LHC

- Le détecteur CMS et son état d'avancement
- Les performances attendues
- Le démarrage
- Les résultats du modèle standard à court terme
- Conclusions

Le détecteur CMS

La caverne et l'aimant

La caverne a été livrée à CMS en février 2005. L'installation des infrastructures permettant de recevoir le détecteur est en cours. → début de la descente des différentes parties du détecteur commencera cet été

Le solénoïde CMS:

A déjà été refroidit en 23 jours à 4 degrés Kelvin

Test à l'intensité nominale en juin (19500 Ampères)

Le détecteur de traces

Dry atmosphere for 10 year

Barrel (TIP

Length 5.4m Volume 24.4m³ Running temperature -10⁰C

Endcap (TEC

- **Spécifications:**
- Résolution sur les traces isolées de haute impulsion
- Résolution sur le paramètre transverse d'impact meilleur que 35μm pour pT>10 GeV
- 50% d'efficacité d'étiquetage des jets de quark b avec une erreur de l'ordre du pourcent Les différents éléments:
- Détecteur de vertex (pixel en silicium)
- Détecteur de couches de silicium (x2)
- Des disques pour les bouchons
- Le planning du détecteur de traces est serré: → Automne 2006 commissioning des différents éléments et insertion dans le support final
- → Fev. 2007 installation du détecteur de trace dans CMS
- → Détecteur de vertex sera terminé pour l'été 2007 et installé début 2008 (protection contre des dégâts)

COMPS vorn transp

Le Calorimètre électromagnétique

- Spécifications:
 Bonne herméticité
 Très fine granularité
 Excellente résolution de
- l'énergie avec un terme constant de l'ordre de 0.4%
- Etat d'avancement des différents éléments: Le tonneau : 78% des cristaux sont au CERN
- 70% des modules sont assemblés 67% des supermodules sont montés,
- l'intégration de l'électronique est en cours
- Les bouchons:
- 80% des VPT sont au CERN
- Cartes d'électroniques en cours de production
- → Le planning du ECAL est serré mais un supermodule (sur 36) est livré et équipé tous les 15 jeurs (0 ent déià été testés en comisu
- les 15 jours (9 ont déjà été testés en cosmiques)
- → 5 supermodules vont être mis en faisceau cet été
- → Test combiné avec le HCAL
- → Test individuel de chaque supermodule en cosmiques
- → Les bouchons ne seront mis dans CMS qu'à l'hiver 2007-2008

Module

Le calorimètre hadronique

Spécifications:

- Bonne herméticité dans un volume restreint
- Fine granularité transverse suivant le calorimètre électromagnétique
- Résolution moyenne de l'énergie
- Profondeur suffisante pour contenir les gerbes hadroniques

Les différents éléments:

- Echantillonnage de plaque de cuivre et de scintillateurs
- Une couche de scintillateur après l'aimant
- Vers l'avant (\rightarrow | η |<5) un échantillonnage de plaque d'acier et des fibres de quartz

Etat d'avancement: Le sous détecteur est construit depuis 2004 calibration \rightarrow 5%

→ Préparation : pour la descente du détecteur, et mise en faisceau avec 1 supermodule du calorimètre électromagnétique + slice tests

Les chambres à muons

Spécifications:

- Identification des muons après 16 λ et jusqu'à $|\eta|$ = 2.4
- Résolution de l'impulsion transverse de 8-15% dpt/pt (à 10 GeV), 20-40% dpt/pt (à 1 TeV)
- Résolution avec l'information du détecteur de traces de 1.0-1.5 % dpt/pt
- Détermination correcte de la charge jusqu'à p=7 TeV Les différents éléments:
- Chambres à dérives (DT) dans le tonneau
- "Cathod Strip Chambers" (CSC) dans les bouchons
- "Resistive Plate Chambers" (RPC) comme base pour le déclenchement
- Etat d'avancement:
- 93% des DT sont produites, 34% sont calibrées et utilisées dans des runs de cosmiques. 90% des CSC sont calibrées et installées.

DriftTubes

60% des RPC sont installées, la calibration des autres est en cours.

→ Les DT, CSC et RPC(tonneau) seront terminées avant la descente du détecteur, les chambres à muons sont prêtes pour le test de l'aimant.

saclay

Les performances

Le trajectographe

%

đ

à

5(8

μ

Détecteur de vertex : Mise en faisceau en 2003-4 : Pions de 150-220 GeV Inefficacité de détection de hits <4% après 4 ans à haute luminosité

Efficacité de reconstruction de traces globales dans les événements simulés :

dapnia

Résolution en énergie et du paramètre d'impact pour un faisceau de muons

250

dapnia

saclav

Le calorimètre hadronique

Mise en faisceau en 2004 de HCAL+ECAL : pions 5 GeV<E<300 GeV

Energie non compensée :

Résolution de l'énergie transverse manquante en fonction de l'énergie transverse scalaire :

Résolution de l'énergie transverse des jets :

 ΣE_{τ} (GeV)

Les chambres à muons

pseudorapidity |n|

Le calendrier à venir

earlay

								ouolay
	Mai	Juin	Juillet	Aout	Septembre	Octobre	Novembre	Décembre
CMS General		Descente du 1 ^{er} anneau	Démarrage du test en cosmique		Fin du test en cosmique Descente de la première roue du tonneau			
Détecteur de vertex	Démarrage de la production du tonneau							Fin de la construction des supports mécaniques
Trajectographe			Réception des bouchons, intégration et mise en place des tests Fin d'assemblage du 2 ^{eme} détecteur du tonneau	Installation d'une partie du tonneau	Démarrage du comissionning du trajectographe			
ECAL		Démarrage de la mise en faisceau Fin de la production de l'électronique de lecture	Démarrage de la mise en faisceau combine ECAL/HCAL	Insertion du premier demi tonneau			Mise en place de 20 cristaux des bouchons	Dernier cristal du tonneau est livre
HCAL		Descente d'un bouchon vers l'avant dans la caverne			Descente du bouchon et du tonneau			
Chambres a muons	Arrivée au cern des dernières chambres du tonneau		Fin des tests en cosmiques pour les chambres		Fin du test en cosmique combine	Les chambres du tonneau sont testees. Fin des tests de long terme		Fin de l'installation des chambres du tonneau
DAQ	Préparation des tests en cosmigues				Installation du DAQ dans la caverne			Installation de la ferme online

œ

saclay

Le démarrage

17/38

olenoid				dapnia
Compact Muon S	Les	premières	années du LHC	œ
				saclay

CM

Pilot run, 75ns L~5x10 ³⁰ cm ⁻² s ⁻ ĴLdt ~ 20 pb ⁻¹	2008, 75/25ns $L \sim 3x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ $L dt \sim 1.2 \text{ fb}^{-1}$	2009, 25ns L~1x10 ³³ cm ⁻² s ⁻¹ JLdt ~ 4 fb ⁻¹	2010, 25ns L~1x10 ³⁴ cm ⁻² s ⁻¹ jLdt ~ 40 fb ⁻¹	
2007	2008	2009	2010	2011
Hardware commissioning April Hardware commissioning May June Machine checkout July August Beam commissioning September October Pilot proton run November December	Shutdown January February Machine checkout March 75ns commissioning April May June June July Low intensity 25ns run August September Ion Run October November	Shutdown January February Machine checkout March Startup and scrubbing April May June June July August Ion Run September October November	Startup and scrubbing January February February Machine checkout April Startup and scrubbing May June June Jush to nominal 25ns August September October November Scomber	Machine checkout January February February Startup and scrubbing April May June June July August September Ion Run October November November

La luminosité attendue au LHC

Le premier run permettra déjà d'accumuler une grande statistique d'événements précieuse pour la compréhension du détecteur

Process	σxBR	ϵ (estimate)	Events selected in 10 pb ⁻¹
$W\!\!\rightarrow\ell\;v$	20 nb	~20%	~40000
$Z \to \ell \ \ell$	2 nb	~20%	~4000
$tt \to \ell ~\nu ~+ X$	370 pb	~1.5%	<100
Jet E _t >25GeV	3 mb	100%	~3x10 ¹⁰ x prescale factor
Jet E _t >140GeV	440 nb	100%	~4.4x10 ⁶
Minimum bias	100 mb		~10 ¹² x prescale factor

événements pris à une nouvelle échelle d'énergie!

→ Permet de tester les détecteurs/ contrôle la simulation du détecteur et les premières mesures d'événements du modèle standard.

saclav

Le détecteur de CMS sera prêt à recevoir les premières données de physique mais ne sera pas tout à fait complet :

Trigger des chambres à muons $|\eta| < 1.6$ (au lieu de $|\eta| < 2.1$) 4^{eme} couche des bouchons des chambres à muons sera manquante

Le détecteur sera complet pour le premier run de physique

Le détecteur CMS au démarrage

 Le détecteur au démarrage ne sera que partiellement calibré et aligné

	Performance attendue au démarrage	Echantillons physiques utilisés pour l'amélioration
ECAL uniformité	2-4%	Z→ee,W →ev,min. bias
Echelle en énergie e/γ	1-2%	$Z \rightarrow ee, \pi^0 \rightarrow \gamma\gamma, Z \rightarrow ee\gamma$
HCAL uniformité	2-3%	di-jets, γ+jet
Echelle en énergie des jets	<10%	tt
Alignement des détecteurs de traces	20-500 μm	traces isolées, Z $\rightarrow \mu\mu$

- Les valeurs seront estimées à partir des mises en faisceau et des simulations mais requièrent :
 - Contrôle qualité permanent
 - Redondance de la calibration/alignement du hardware
 - Calibration « in situ »
- Beaucoup de statistique dans un temps court

saclay

La physique du modèle standard à CMS

Le quark Top

g leile

Le quark Top

 \rightarrow La masse du top est un paramètre important du modèle standard : pour les corrections électrofaibles, contraint la eV] masse du Higgs du modèle standard, etc \rightarrow Bruit de fond principal pour beaucoup ĕ de processus au delà du modèle standard La production du quark top au LHC se fait principalement par la fusion de gluons :

90%

 $\sigma(NLO) \approx 830 \text{pb}$ at $\sqrt{s} = 14 \text{TeV}$

111111

Le quark Top

Bruit de fond de la recherche de pp→tt→WbWb :

Canal tout hadronique : 3.7Mevnt/10fb-1 **QCD** multijet Canal Lepton + jets (lepton = e/μ) 2.5Mevnt/10fb-1 $bb \rightarrow lv + jets, W + jets \rightarrow lv + jets,$ $Z+jets \rightarrow II+jets, WW \rightarrow Iv+jets,$ WZ→lv+jets, ZZ→ll+jets **Canal Di-lepton :** 0.4Mevnt/10fb-1 Drell-Yan, Z+jets→ll+jets, WW+jets, bb

Etude du canal semi-leptonique

saclay

dapnia

semi-leptonique tt \rightarrow bWbW \rightarrow bl ν bqq

	Signal	Other $t\bar{t}$	W+4j	Wbb+2j	Wbb+3j	S/N	
Before selection	365k	1962k	82.5k	109.5k	22.5k	0.032	
L1+HLT Trigger	62.2%	5.30%	24.1%	8.35%	8.29%	0.74	
Pre-selection	45.8%	2.68%	11.7%	3.94%	5.91%	1.10	
Four jets $E_T > 30 \text{ GeV}$	25.4%	1.01%	4.1%	1.48%	3.37%	1.69	
p_T^{lepton} >20 GeV/c	24.8%	0.97%	3.9%	1.41%	3.14%	1.72	
b-tag criteria	5.5%	0.21%	0.052%	0.47%	0.70%	3.73	BBb
No jet overlap	3.0%	0.11%	0.027%	0.25%	0.44%	3.87	1
P_{χ^2} -cut 20%	1.4%	0.039%	0.0097	0.061	0.07	5.3	
P_{sign} -cut 80%	1.2%	0.025%	0.0085	0.052	0.05	6.8	
P_{comb} -cut 50%	0.7%	0.013%	0.0036	0.013	0.	8.2	
Scaled L=1fb ⁻¹	588	64	6	2	0	8.2	

→ ~660 événements sélectionnés (1fb⁻¹)
 pour un bruit de fond de l'ordre de 11%
 → La section efficace de production peut être déterminée avec 1fb⁻¹ et avec une erreur totale de 14%
 → La masse est mesurée avec une erreur de 1.9 GeV pour 10 fb⁻¹ de données

Erreur pour la section efficace	$\Delta \hat{\sigma}_{t\bar{t}(\mu)} / \hat{\sigma}_{t\bar{t}(\mu)}$
Simulation samples (ϵ_{sim})	0.6%
Simulation samples (F_{sim})	0.2%
Pile-Up	3.2%
Underlying Event	0.8%
Jet Energy Scale (light quarks)	1.6%
Jet Energy Scale (heavy quarks)	1.6%
Radiation	2.6%
Fragmentation	1.0%
b-tagging	7.0%
Parton Density Functions	3.4%
Integrated luminosity (1fb ⁻¹)	10%
Integrated luminosity (5fb ⁻¹)	5%
Integrated luminosity (10fb ⁻¹)	3%
Background level	0.9%
Total Systematic Uncertainty (1fb ⁻¹)	13.6%
Total Systematic Uncertainty (5fb ⁻¹)	10.5%
Total Systematic Uncertainty (10fb ⁻¹)	9.7%
Total Uncertainty (1fb ⁻¹)	13.7%
Total Uncertainty (5fb ⁻¹)	10.5%
Total Uncertainty (10fb ⁻¹)	9.7%

			F
0	Signal other Ttbar W+jets	Erreur pour la mesure de la masse	Alternative Selection Full Scan Ideogram Δm_t (GeV/c)
ŀ		Pile-Up	1.2
F		Underlying Event	0.5
0		Jet Energy Scale	1.2
F		Radiation (pQCD)	0.2
٥Ē		Fragmentation	0.3
Ē		b-tagging	0.3
E		Background	0.4
0		Parton Density Functions	0.1
F		Total Systematical uncertainty	1.9
٥ <u>ل</u>		Statistical Uncertainty (10fb ⁻¹)	0.31
50	100 150 200 250 300 350 m ^{fit} (GeV)	Total Uncertainty	1.9

Etude du canal di-leptonique

di-leptonique tt \rightarrow bWbW \rightarrow blvblv

	tt dilepton	other tt	Z+jets	ZZ+jets	ZW+jets	WW+jets	S:B
xsec/pb	54.22	433.78	11055.30	11.10	0.89	7.74	0.005
L1	45.06	302.34	2967.13	3.09	0.49	6.06	0.014
HLT	36.41	184.43	2007.67	1.55	0.39	4.96	0.017
2 jets	25.92	151.23	194.73	0.45	0.04	0.91	0.075
2 leptons	14.96	24.95	123.26	0.20	0.02	0.24	0.101
isolated leptons	9.60	4.22	48.33	0.10	0.01	0.13	0.182
2 bjets	5.30	3.13	2.55	0.02	0.00	0.01	0.928
lepton inv. mass	4.46	2.88	0.55	0.00	0.00	0.01	1.292
lepton pt cut	3.07	0.62	0.34	0.00	0.00	0.01	3.151
met cut	2.30	0.43	0.05	0.00	0.00	0.01	4.748
# high pt jet cut	1.85	0.21	0.03	0.00	0.00	0.01	7.332
kinematical reco.	0.66	0.05	0.00	0.00	0.00	0.00	12.167

Erreur pour la section efficace :

Effect	$\Delta \sigma_{t \overline{t} d i l} / \sigma_{t \overline{t} d i l}$
ISR and FSR	2.8%
Jet Energy Scale	3.6%
b-tag efficiency	3.8%
lepton reconstruction	1.6%
Pile-Up	3.6%
Underlying Event	4.4%
heavy quark fragmentation	5.1%
PDF uncertainties	5.2%
Statistical uncertainty	0.9%
Integrated luminosity	5%

 $\rightarrow \sim 1850$ événements sélectionnés (1fb⁻¹) $\Delta \sigma_{t\bar{t}dil} / \sigma_{t\bar{t}dil} = 11\% (syst) \pm 0.9\% (stat) \pm 5\% (luminosity)$ pour un bruit de fond de l'ordre de 10% \rightarrow La section efficace de production peut être déterminée avec 1fb⁻¹ et avec une erreur totale de 12% → Avec 1fb⁻¹, 660 événements peuvent être utilisées pour la mesure de la masse du quark top.

Etude du canal tout hadronique

dapni<u>a</u> CEC saclay

tt →bWbW→bqqbqq

Selection	Requirement	$\sigma \epsilon t \overline{t}$	$\sigma \epsilon \text{ QCD}$	S/B	$S/\sqrt{S+B}$	$\epsilon t \overline{t}$
		[pb]	[pb]		$(\mathcal{L} = 1 \text{ fb}^{-1})$	(%)
Trigger	HLT jet+b-tagging	64	11600	1/180	18.8	16.8
Kinematical	$6 \le N_{jet} \le 8$	59	7900	1/130	20.9	15.5
	$E_{\rm T} \ge 30~{ m GeV}$	25	930	1/37	25.6	6.6
	centrality ≥ 0.68	16.8	324	1/19	28.8	4.4
	aplanarity ≥ 0.024	15.3	251	1/16	29.6	4.0
	$\sum_{3} E_{\mathrm{T}} \ge 148 ~\mathrm{GeV}$	15.2	234	1/15	30.4	4.0
b-tagging	1 b-tag	14.5	148	1/10	36.0	3.8
	2 b-tag	10.0	54	1/5	39.5	2.6

→ ~10k événements sélectionnés (1fb⁻¹) pour un S/B = 1/5

→ Il est possible d'avoir S/B=1 utilisant un réseau de neurones

→ Pour la mesure de la masse il est important ge d'avoir la bonne association de jets
 → utilisation d'un likelihood

Erreur pour la section efficace :

-	$\Delta\sigma/\sigma$ (%)
Pile Up	10.0
Underlying Event	4.1
Fragmentation	1.9
PDF	4.2
IS/FS Radiation	7.9
Jet Energy Scale	8.7
b-tagging	2.0
Background	5.0
Integrated Luminosity	5.0
Statistical Uncertainty (1 fb^{-1})	2.0

 $\Delta\sigma/\sigma = 2\%(stat) + 17\%(syst) + 5\%(luminosity)$

Erreur pour la mesure de la masse	$\Delta m_t [~{\rm GeV}/c^2]$
Pile Up	0.3
Underlying Event	0.4
PDF	1.1
IS/FS Radiation	1.4
Fragmentation	0.8
Jet Energy Scale	2.0
b-Tagging	0.2
Selection	0.5
Background	2.0
Statistical Uncertainty with $\mathcal{L}=1~{\rm fb}^{-1}$	0.5

S-channel est observable avec 10 fb⁻¹ avec une erreur totale de l'ordre de 36% antiproton

Taux de production de W $\rightarrow \mu\nu$ et Z $\rightarrow \mu\mu$

- Sélection des événements :
- **Z**→μμ :
- 2 traces isolées dont une associée à des hits dans les chambres à muons avec $|\eta| < 2$ et $p_T > 20$ GeV
- 83.7 GeV <M(μμ) < 98.7 GeV
- $W \rightarrow \mu \nu$:
- 1 muon isolé avec $|\eta| < 2$ et $p_T > 25$ GeV
- Veto sur un second lepton $p_T > 20$ GeV
- Veto sur les événements de plus de 3 jets
- 40 GeV <M_τ(μν) < 200 GeV
- Pour 1 fb⁻¹:

 $\mathcal{L} \times \sigma(\mathrm{pp} \to \mathrm{Z} + \mathcal{X} \to \mu^+ \mu^- + \mathcal{X}) = (1160 \pm 1.5 \,(stat.) \pm 28 \,(syst.)) \,[10^3 \mathrm{events}]$ $\mathcal{L} \times \sigma(\mathrm{pp} \to \mathrm{W} + \mathcal{X} \to \mu\nu + \mathcal{X}) = (14700 \pm 6 \,(stat.) \pm 540 \,(syst.)) \,[10^3 \mathrm{events}]$

→ Possible d'utiliser cette mesure pour déterminer la luminosité à 6-7% avec 1fb⁻¹ (la mesure devrait donner une erreur de 10%)

Mesure de la masse du W

Sélection des événements : $W \rightarrow e_V$

$W \rightarrow e \nu$				
Selection	number of events	% remaining events		
no selections	1.75×10^{7}	100%		
1 isolated HLT electron	6238091	35.6%		
1 electron, $E_e^T > 29 \text{ GeV}$	5475592	31.3%		
MET> 25 GeV	4564244	26.1%		
$ \vec{u} < 20 \text{ GeV}$	3405938	19.5%		
$p_{jet,max}^T < 30 \text{ GeV}$	3117226	17.8%		
electron in fiducial volume	2241893	12.8%		
ννγμν	- A - A -	- A - 2		

Source of uncertainty	10 MeV effect on M_W	ΔM_W at 1 fb $^{-1}$	ΔM_W at 10 fb $^{-1}$	
statistics		40 MeV	15 MeV	
background	10%	10 MeV	2 MeV	
electron energy scale	0.25%	10 MeV	2 MeV	
scale linearity	0.00002 GeV^{-1}	30 MeV	<10 MeV	
energy resolution	15%	5 MeV	1 MeV	
MET scale	1.5%	15 MeV	<10 MeV	
MET resolution	5%	9 MeV	$< 5 { m MeV}$	
recoil system	1.5%	15 MeV	<10 MeV	
total instrumental		40 MeV	<20 MeV	
PDF uncertainties		20 MeV	<10 MeV	
Γ_W		<20 MeV		
$\delta(X_T(Z)/X_T(W))$	0.5%	see text	see text	
1.2.1				

$W \rightarrow \mu \nu$

	<u>r i i i i</u>
Cut	events remaining
exactly one μ reconstructed	58.2%
$P_{\mu}^{T} \geq 25 \text{ GeV}$	40.8%
$E_{miss}^T \geq 25~{ m GeV}$	35.9%
$ \eta^{\mu} \leq 2.3$	34.57%
$ \vec{u} \leq 20 \text{ GeV } \& \# \text{ jets} \leq 1, \ p_{T,jet} \leq 30 \text{ GeV}$	23.68%

	. I.
source of effect and size variation	shift of reconstructed W mass
muon momentum scale by 0.1%	15 MeV
muon $1/p^T$ resolution smeared by 10%	30 MeV
shift in muon θ by one σ_{θ}	19 MeV
muon θ resolution smeared by 10%	3 MeV
systematic shift in muon $\eta \pm$ resolution	19 MeV
reduction/expansion of η acceptance \pm resolution	17 MeV
calorimeter MET scale by 1%	19MeV

\rightarrow Avec 1 fb⁻¹, il sera possible de mesure la masse du W avec une erreur de ~40 MeV (sys)

La production $W^{\pm}Z^{0}$ et $W^{\pm}\gamma$ prouve les couplages a trois boson de gauge et la nature non abelienne de la theorie de gauge du modele standard

La production Z⁰Z⁰ via la voie s est interdite dans le modele standard, processus de bruit de fond irréductible dans la recherche du boson de Higgs du modèle standard pp→H→Z⁰Z⁰ → Section efficace des processus est sensible à la nouvelle

La production W[±]Z⁰

On définit notre signal comme étant des événements contenant 1 bosons Z ⁰ sur sa couche de masse. Etude du canal W [±] Z ⁰ →II I' _V avec I,I' = e,µ Bruit de fond principaux : Z ⁰ bb, tt, Z ⁰ Z ⁰						
 Sélection des 3 leptons is 1 candidat 	<u>s événe</u> solés av Z ⁰ _{cand} :	<u>ments :</u> ec p _T > 20 81.2 GeV) GeV <m(z<sup>0_{car}</m(z<sup>	_{nd}) <101.	2 GeV	
Selection step	$WZ \rightarrow 3\ell$	eebb	uubh	$tt \rightarrow 2\ell$	= 	·····································
ound one Z candidate	124(7.74%)	264 (0.44 %)	$\frac{\mu\mu00}{655(1.09\%)}$	$\frac{11}{381(0.615\%)}$	• 10 \vdash pp \rightarrow WZ \rightarrow I ⁺ I'I'v	eebb
Second Z veto	123 (7.68 %)	262 (0.437 %)	646 (1.08 %)	371 (0.599 %)	(I,I'=e,μ)	
Found third (W) lepton	90.6 (5.66 %)	170 (0.284 %)	241 (0.402 %)	248 (0.4 %)	8	
S_{IP} cut	82.8 (5.18 %)	77.6 (0.129 %)	151 (0.252 %)	128 (0.207 %)	$a = \int dt = 1 \text{ fb}^{-1}$	
Isolation cut on Z leptons	77.1 (4.82 %)	77.6 (0.129 %)	120 (0.201 %)	71.3 (0.115 %)		
Isolation cut on W lepton	70.7 (4.42 %)	3.64 (0.00606 %)	14.2 (0.0236 %)	24.5 (0.0395 %)	aĒ (
Jet veto	63 (3.94 %)	2.42 (0.00404 %)	9.26 (0.0154 %)	3.41 (0.0055 %)		
Systematic source		Error				
electron efficiency		2.6 %			0	90 95 100 105 110 115
muon efficiency		3.4 %	servatio	n et la me	esure de la	section
track efficiency		< 0.5%				
Jet energy scale		5% ettic	cace de p	roductioi	n pp→Z°₩⁼	•→3I est
$Z^0 b \overline{b}$ background substra	action	12 %	sible (sig	nificanco	do 11) av	oc 1fb ⁻¹ ot
$Z^0Z^0 \rightarrow 2e^{2\mu}$ background substraction 4% PUSSIDIE (SIGNINGATICE UE 11) avec 110 - et						
PDF uncertainty $\frac{+3.9\%}{-3.5\%}$ avec une erreur de ~15%						

La production Z⁰Z⁰→4e

34/38

On définit notre signal comme étant des événements contenant 2 bosons Z⁰ sur leur couche de masse. Etude du canal Z⁰Z⁰ \rightarrow e⁺e⁻e⁺e⁻ Bruit de fond principaux : Z⁰bb, tt, Z⁰W[±]

Sélection des événements :

- 4 électrons de p_T > 10, 15, 20 et 30 GeV
- 2 candidats Z⁰_{cand} tels que : 50 GeV <M(Z⁰_{cand}) <120 GeV

Source of systematic uncertainty	$\int Ldt = 1 \mathrm{fb}^{-1}$
Luminosity	10.0
Trigger ef£ciency	1.0
Background subtraction	0.6
$Z^0\gamma^*$ subtraction	1.2
Electron identification	4×2.0
$\mathcal{B}(Z^0 \to e^+ e^-)$	2×0.1
Total	12.9

	1	1	· · · · ·			Z ⁰ Z ⁰ Zbb t ZW	-
	┎┨┎╍			L		L	-
- 0 (3 0	70	80	90	100	110	120
							Z ⁰ Z ⁰ Zbb tt ZW 0 60 70 80 90 100 110

	1fb ⁻¹
Z⁰Z⁰→4e	7.11
Zbb	0.08
tt	0.12
ZW	0.02
Total bruit de fond	0.22

L'observation et la mesure de la section efficace de production $pp \rightarrow Z^0Z^0 \rightarrow 4e$ est possible avec 1fb⁻¹ et avec une erreur de ~13%

Exemple d'analyse avec le 1^{er} fb⁻¹

- La calibration de calorimètre électromagnétique sera de ~2% pour le premier fb⁻¹
- L'alignement des détecteurs de traces sera de l'ordre de 100μm (plan xy)
- L'ensemble de ces effets a été simulé pour les événements du signal:

	1fb-1
Z⁰Z⁰→4e	6.76
Zbb	0.08
tt	0.12
ZW	0.02
Total bruit de fond	0.22

Conclusion

• Le détecteur CMS sera prêt pour la prise de données de l'été 2007. L'installation du détecteur de pixel et des bouchons du calorimètre électromagnétique s'effectuera durant l'hiver 2007-2008 (après le Pilot Run). Le premier fb⁻¹ de données sera enregistré avec le détecteur complet.

La section efficace de production du quark top sera établie avec 1fb⁻¹ et avec une erreur de l'ordre de 13%. La masse du quark top sera mesurée avec 10fb⁻¹ et avec une erreur de 1.9 GeV. La production « single top » sera observable avec 10 fb^{-1.}
La production de boson W et Z permettra de réduire les erreurs sur la luminosité, la production diboson accessible des le premier 1fb⁻¹ permettra de tester un peu plus le modèle standard.
→ Résultats à paraître dans le TDR de physique volume II en juin 06

Les analyses accessibles avec le 1er fb⁻¹ vont être reproduites pour prendre en compte les effets de miscalibration et de misalignement → Simulation de plus en plus proche de la réalité

→ Rédaction du TDR de physique volume III pour décembre 2006_{36/38}

2 Ecal SuperModules dans CMS

CMS en construction

Le detecteur CMS

ECAL calibration (CMS)

- Need to find constants C_i so that $E(GeV) = \sum_{xtal} c_i ADC_counts_i$
- Lab. measurements \rightarrow 3-4%
 - Light yield, APD gain
- Cosmics \rightarrow 3-4%
- Test beam precalibration → 2.0%
 25% of detectors
- Minimum bias events \rightarrow 2%
 - Fast calibration profiting from ϕ symmetry
- $Z \rightarrow e^+e^-$, $W \rightarrow e_V \rightarrow 0.5\%$
 - Design value, requires the use of the tracker and 2 months

Ultimate precision needed for the Higgs searches in the γγ **channel.** – Monitors the crystal signal changes due to irradiation

Top Quark Physics: Top Mass

New method : hep-ex/0501043correlate the b transverse decay length with m_t

4/11

spin correlation in top pairs & W polarization

Drell-Yan Production of Lepton Pairs

The Drell-Yan process $pp \rightarrow l^+ l^-$ is a measurement for \mathcal{A}_{FB} :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4\mathrm{s}} [\mathrm{A}_0(1 + \cos^2\theta) + \mathrm{A}_1\cos\theta] \longrightarrow \sigma = \frac{4\pi\alpha^2}{3\mathrm{s}} \mathrm{A}_0, \mathrm{A}_{\mathrm{FB}} = \frac{3}{8} \frac{\mathrm{A}_1}{\mathrm{A}_0}$$

New physics can appear in cross section measurement, in A_{FB} measurement or as peak in mass distribution q e^{-},μ^{-} \overline{q} Z/γ e^{+},μ^{+}

B-Physics: $B_s \rightarrow \mu^+ \mu^-$

Owing to precise tracking and vertexing of CMS, B-physics program is rich:

- > CP violation
- **>** rare decays
- ➢ life-time
- **B**_c mesons, etc

μ⁺μ⁺ highly suppressed in SM: B=(3.42±0.54)x10⁻⁹*
Forbidden at tree level. Effective Fourtheast tree level.

- Internal guark annihilation, Helicity suppression
- In SM, only through higher order loop diagrams
- → sensitive probe for new physics!

Efficiencies and event numbers for 10 (100) fb⁻¹:

	Signal	Background
number of events after trigger and kinematics selections	66	$2.9 imes10^7$
tracker isolation. Low luminosity	0.49	$3.0 imes10^{-2}$
tracker isolation. High luminosity	0.34	$2.0 imes10^{-2}$
tracker+calo isolation. Low luminosity	0.46	$1.3 imes10^{-2}$
tracker+calo isolation. High luminosity	0.31	$0.87 imes10^{-2}$
$2 - \mu$ rec. + sec.vertex selections. Low luminosity	0.32	$\leq 2.3 imes 10^{-4}$
$2 - \mu$ rec. + sec.vertex selections. High luminosity	0.18	$\leq 2.3 imes 10^{-4}$
mass window 80 MeV	0.72	$1.1 imes10^{-2}$
number of events after cuts. Low luminosity	7.0	≤ 1.0 at 90% C.L.
number of events after cuts. High luminosity	26.0	≤ 6.4 at 90% C.L.

\rightarrow 4 σ evidence after 3 years at 10fb⁻¹ possible!

Etat d'avancement

Les chambres à muons :

93% des DT sont produites, 34% sont calibrées et utilisées dans des runs de cosmiques.

90% des CSC sont calibrées et installées.

60% des RPC sont installées, la calibration des autres est en cours.

→ Les DT, CSC et RPC (tonneau) seront terminées avant la descente du détecteur, les chambres à muons sont prêtes pour le test de l'aimant. Le calorimètre hadronique : Le sous détecteur est construit depuis 2004, calibration → 5% → Préparation : pour la descente du détecteur, et mise en faisceau avec 1 supermodule du calorimètre électromagnétique + slide test

dapnia

saclay

Etat d'avancement

Le calorimètre électromagnétique : Le tonneau : 78% des cristaux sont au CERN, 67% des supermodules sont montes, l'intégration de l'électronique est en cours

Les bouchons:

80% des VPT sont au CERN

Cartes d'électroniques en cours de production

Le planning du ECAL est serré mais un supermodule (sur 36) est livré équipé tous les 15 jours (9 ont déjà été testés en cosmiques)

5 supermodules vont être mis en faisceau cet été Test combiné avec le HCAL

Test individuel de chaque supermodule en cosmique

Les détecteurs de traces :

Le planning du détecteur de traces est serré :

Automne 2006 commissioning des différents éléments et insertion dans le support final Fev. 2007 installation du détecteur de trace dans CMS Détecteur de vertex sera terminé pour l'été 2007 et installé début 2008 (protection contre des dégâts)

Autre bruits de fond

D'autres bruit de fond ont été étudie mais du a des problèmes de statistique (qui peut être lie a la difficulté de tourner sur les data sets), uniquement des limites supérieures sur le nombre d'événement peuvent être obtenues.

ZZ→ ee bb → 4e : c'est le même processus mais dans une désintégration via des bosons b. La section efficace est 5 fois plus grande que le signal. Aucun événement n'est observe dans la classe 1. Donc ce bruit de fond contribue a moins de 0.02 événements/fb⁻¹.

ZZ→ee jj va être étudie pour déterminer la quantité de bruit de fond provenant de Z+2jets dans le cas des événements de classe 2.

Wbb \rightarrow 3e : pas d'événements pour la classe 1, mais du a des problèmes de statistique, au maximum on attend 1.32 événements/fb⁻¹.

Néanmoins, dans l'analyse on attend 69 événements/fb⁻¹ provenant de Wbb \rightarrow 3e. Il faut en plus un quatrième objet (20% des cas), et identifier cet objet comme un électron

→On attend 0.41 événements/fb⁻¹ avant d'appliquer la sélection des Z⁰

Les études vont se poursuivre pour la classe 2.

Pour 1 fb⁻¹

Le signal est comparé à différents échantillons MC en fonction de la classe étudiée.

Quasiment pas de bruit de fond pour les événements de la classe 1, pour ceux de la classe 2, on a S/B \approx 1, cette classe peut être intéressante dans le cadre des études des couplages trilineaire de boson de jauge.

Classification des événements

σ(Amplitude)/Amplitude

Amplitude

- Une analyse rapide des runs a permis de détecter les problèmes d'acquisition ainsi que les canaux défectueux:
- 3 canaux sans signal et 2 canaux avec un "demi" signal.
- Premiers aperçus des canaux mis dans un faisceau d'électron à 120 GeV:

Bruit corrélé

Étude de la linéarité de l'électronique

Au cours de la mise en faisceau une non linéarité de l'électronique de lecture a été observée. Cette non linéarité peut être paramètrée par : CoeffNonLinearite = (p0 + p1 x log(E + p2))

L'analyse reste en cours pour en comprendre les origines.

Simulation dans les événements Zee

On utilise la courbe mesurée durant la mise en faisceau. On oscille autour de cette courbe afin de simuler la variation de la non linéarité pour l'ensemble des canaux. On corrige par la courbe mesurée.

Timing

We can use laser timing value to measure the time of maximum for each channel with a precision of $\sigma = 0.7$ ns.

La mise en faisceau d'une partie du calorimètre électromagnétique

Mise en faisceau de 1700 cristaux ce qui correspond a un super-module (soit 1/36^{ème} du tonneau).

- Étude avec des faisceaux d'électrons, muon et pions à différentes énergies.
- Mise en faisceau réalisé avec l'électronique finale de lecture

et contrôle de l'irradiation des cristaux par lasers

Paramètres	tonneau	bouchon
Couverture	 η <1.48	1.48< η <3.0
D φ x D η	0.0175 x0.0175	0.0175 x 0.0175 a 0.05 x 0.05
Profondeur X ₀	25.8	24.7
# de cristaux	61200	14648
Volume	8.14m ³	2.7m ³

Temps du maximum

 → Calcul de l'amplitude : Méthode des poids
 → Nécessité de connaître le temps pour lequel le signal est au maximum a moins de 1ns
 → Utilisation des données Laser

→L'ensemble des maximum des cristaux peuvent être déterminer a partir des données laser.
56/38

Etudes des canaux

- Analyse rapide des runs
- \rightarrow détection des problèmes d'acquisition et des canaux
- défectueux (5‰).
- ➔ Premiers aperçus des canaux mis dans un faisceau d'électron à 120 GeV:

Correction des canaux morts ou défectueux

- Un électron ne dépose pas toute son énergie dans un seul cristal : on effectue une somme de 9 cristaux (3x3) autour du cristal d'énergie maximale
- → Perte de statistique quand un canal est défectueux
- → Correction via un réseau de neurone
- Variable utilisees :
- Sum8 = somme des energies des 8 cristaux
- $LogX8 = Log(S_L/S_R)$ $LogY8 = Log(S_U/S_D)$

Correction des canaux morts ou défectueux

→ Le réseau de neurones permet une très bonne correction

La résolution

Résolution dans une zone centrale du cristal (pointillé) et avec une couverture uniforme (trait plein).

→ Les 0.5% de résolution a 120 GeV sont atteints (TDR)!

Simulation dans les événements Z→ee

- → Simulation des observations de la mise en faisceau dans des événements
- **Z**→**ee** :
- la non linéarité
- canaux défectueux
- tours de trigger défectueuses

• du bruit corrélé

La compensation de l'irradiation des cristaux permet de retrouver une bonne

Conserve une très bonne réponse du calorimètre électromagnétique

- La production pp→ZZ est une production prédite par le modèle standard mais non observée a l'heure actuelle.
- Processus de bruit de fond irréductible dans la recherche du boson de Higgs du modèle standard pp \rightarrow H \rightarrow ZZ
- Etude des événements ZZ pour les couplages anormaux a 3 bosons de jauge signe de nouvelle physique. $\Lambda_{FF} = 2 \text{ TeV}$

La section efficace de production NLO est de 21.2 pb.

➔ Mesure de la section efficace de production dans le cadre du modèle standard.

Definition de Z⁰Z⁰→4e

cross-section (fb/GeV) On définit notre signal comme étant des événements contenant 2 bosons Z⁰ sur leur couche de masse : $70 \text{ GeV} < m(Z^0) < 110 \text{ GeV}$

Composition de nos événements (Pythia):

	Proportion
Z ⁰ Z ⁰	66.2%
Ζ^ο γ*	28.5%
$\gamma^*\gamma^*$	5.3%

Considérer comme le bruit de fond $Z^{0}\gamma^{*}$ qui varie comme le signal et que l'on ne peut distinguer.

Échantillons et section efficace de production:

Données	$\sigma_{NLO} x BRx \epsilon_{kin}$ (pb)
ZZ→4e	0.0187
ZW→3I	$\begin{array}{c} W^{+} \rightarrow 1.034 \\ W^{-} \rightarrow 0.63 \end{array}$
tt→4e	0.189
Zbb→4e	0.1279

Sélection des événements :

Trigger : 1 électron avec $p_T > 26$ GeV ou 2 électrons avec $p_T > 14.5$ GeV

Efficiency HLT Single Electron OR HLT Double Electron

Sample	Single Electron Trigger	Double Electrons Trigger	Single OR Double Electrons Trigger
$Z^0 Z^0 \rightarrow 4e$	97.3%	98.4%	99.5%
$W^{\pm}Z^{0} \rightarrow lll'\nu'$	85.6%	83.8%	91.5%
$t\bar{t} \rightarrow 4e$	78.2%	68.9%	86.9%
$Z^0 bb \to 4 e$	85.5%	79.3%	93.0%

65/38

Définition : Candidat Electron = électron avec 0.75 < E/P < 3. (misidentification ~0.7%) Candidat Electron Super-Cluster = un supercluster qui n'est pas associe a une trace (misidentification \sim 30%) Sélection des événements : Candidat Electron : Energy Hadronic/Energy Em < 0.08Tracker Isolation < 0.34 Nb Tracks <3 Candidat Electron Super-Cluster : Energy Hadronic/Energy Em < 0.03Calorimetrical Isolation < 0. Tracker Isolation < 0.8 Nb Tracks <3

 $\sqrt{\sigma_{\eta\eta}^2} < 0.026, \sqrt{\sigma_{\eta\phi}^2} < 0.0125, \sqrt{\sigma_{\phi\phi}^2} < 0.0125$

	Echantillons	Efficacité de l'identification
Electron Isoles	ZZ→4e	96.7 ± 0.2%
Electron non isoles	tt→4e	17.4 ± 0.4%
	Zbb→4e	27.1 ± 0.5%

Sélection des candidats Z⁰

- 4 Candidats dans $|\eta| < 2.5$ et $P_T > 10$, 15, 20 et 30 GeV respectivement
- Les candidats Electrons sont triés par p_T décroissant
- Si il y a plus de 4 candidats Electrons, on conserve ceux ayant les plus grands p_T (efficacité = 98.3%, multiplicité = 1.025)

On demande 2 candidats Z_{cand}^0 tels que : 50 GeV < M(Z_{cand}^0) < 120 GeV

Ldt. fb

L'observation et la mesure de la section efficace de production $pp \rightarrow Z^0Z^0 \rightarrow 4e$ est possible avec 1fb⁻¹ et avec une erreur de ~13% 0

→ Permet d'augmenter la statistique du signal pour l'étude des couplages anormaux

68/38

Ldt, fb⁻¹