Galaxy cluster detection with LSST : photometric calibration, bright object masks and AMICO

CSI 2024

Nathan Amouroux

General context

Vera Rubin Observatory

- 10 year photometric survey
- 6 bands from near IR to near UV
- 3.5 degrees field of view (x49 moons)
- Scan visible sky in 3 nights
- Objectives :
 - Solar system study
 - Milky way study
 - Transients
 - Cosmology

General context

Vera Rubin Observatory

General context

Vera Rubin Observatory

- 4 probes for testing Λ CDM and its extensions:
 - > Weak Lensing
 - ► BAO
 - Supernovae
 - Clusters

- 4 probes for testing Λ CDM and its extensions:
 - > Weak Lensing
 - ► BAO
 - Supernovae
 - Clusters
- Largest virialized structure of the universe
- Abundance = Counting clusters in bins of mass and redshift
- Ingredients to constrain cosmological parameters:

- 4 probes for testing Λ CDM and its extensions:
 - > Weak Lensing
 - ► BAO
 - Supernovae
 - Clusters
- Largest virialized structure of the universe
- Abundance = Counting clusters in bins of mass and redshift
- Ingredients to constrain cosmological parameters:
 - 1) Calibrated photometry

- 4 probes for testing Λ CDM and its extensions:
 - > Weak Lensing
 - ► BAO
 - Supernovae
 - Clusters
- Largest virialized structure of the universe
- Abundance = Counting clusters in bins of mass and redshift
- Ingredients to constrain cosmological parameters:
 - 1) Calibrated photometry
 - 2) Masks for correction on galaxy density

- 4 probes for testing Λ CDM and its extensions:
 - Weak Lensing
 - ➢ BAO
 - Supernovae
 - Clusters
- Largest virialized structure of the universe
- Abundance = Counting clusters in bins of mass and redshift
- Ingredients to constrain cosmological parameters:
 - 1) Calibrated photometry
 - 2) Masks for correction on galaxy density
 - 3) Cluster detection algorithms

Table of Content

Three projects :

I) Collimated Beam Projector (CBP)

II) Bright object masks

III) Galaxy cluster detection algorithms

I) Collimated Beam Projector

CBP general principle

The goal is to mimic a **monochromatic** star of **known flux**, to **calibrate** the **response** of an instrument and its filters. **Final goal: filter positions known at 0.1nm.**

The **Collimated Beam Projector (CBP)** must be able to shoot:

• a known quantity of photons → photodiode

Context : SNIa cosmology

- at a known wavelength \rightarrow monochromatic source and spectrograph
- in a parallel beam → point source at focal point of a **telescope**

CBP general principle

Collimated Beam Projector Batoid

- Geometrical simulation
- Load instruments via configuration files
- Set optics reflectiveness
- Set photons wavelenght, position and initial direction to create beams
- Propagate photons through the telescope

3D projection of ray propagation with batoid

 \rightarrow Output = photons physical position on detector + path + their flux (in %)

Example of one CBP star shot in the telescope : beam + its ghosts on one CCD of ComCam

Collimated Beam Projector ImSim : Image simulation

- One spot simulated from batoid output
- Basic sensor model (not LSST) → Need to use LSST sensor model for photometry
- Arbitrary flux : need to take exposure time into account
- Next steps :
 - Setup common framework for cbp analysis
 - > Analysis with real data

II) Bright object masks

Bright object masks The bright stars issue

Bright stars reduce image quality by introducing optical/electronical effects \rightarrow May induce biases in science results

Example of a saturated star and its mask in HSC-SSP Coupon et al. 2017

\rightarrow Concerns different working groups with different needs for masks

DC2 simulation

- Objective : produce data close to LSST
- Underlined by cosmological simulation + astronomical objects from external data

→ Production of images with LSST instrumental effects

• Final catalog made by running LSST Science pipeline on the images

Example of a simulated DC2 image

We use this dataset in the following parts

Bright object masks Masking methodology

• Based on HSC-SSP method : Not discussed here

1) Build a « bright object » sample and a galaxy sample

2) Determine disk radii to mask around bright star as a function of the magnitude using density profiles

3) For each object : mask the region contained within the corresponding disk

Radiuses goes from ~50" down to 7"

DESC DC2 bright star masks project How it works

DESC DC2 bright star masks project Final map

III) Galaxy cluster detection algorithms

AMICO algorithm

- AMICO = Adaptative Matched Identifier of Clustered Objects
- New algorithm to add to DESC galaxy cluster algorithms
- Optimal Filtering \rightarrow Non biased signal amplitude estimator with minimal error
- 3D SNR map \rightarrow cluster detection
- Galaxy member association to clusters

Example of SNR map on 1x1 deg² portion of the sky

AMICO validation

Validation / Optimization work :

- Richness validation
- Galaxy selection criteria
- Selection functions
- Tests on cosmological constraints
- ➤Mask validation

Prospects

≻ CBP :

- Development of common software for CBP data analysis
- Summit data to analyze soon
- Bright objects masks :
 - Discussion with different working groups on bright galaxy masks
 - Study on first ComCam catalogs
- ≻ AMICO :
 - Finalize DC2 analysis with AMICO
 - Looking forward to first Rubin cluster catalogs