EFT-based methods for classical gravity

Stavros Mougiakakos

GdR Ondes Gravitationnelles: réunion du groupe de travail «Formes d'Onde» 24/09/2024

<u>Based on works with</u>: Vanhove, Bernard, Dones, Vernizzi, Riva, Levi, Vieira

[2407.09448],[2405.14421],[2310.19679],[2204.06556], [2102.08339],[2010.08882],[1912.06276]

Motivation

- 1. Multi-messenger Astronomy from the largest particle collider
- 2. Observational window on "strong" gravity
- 3. Search for "exotic" objects + new physics

- 1. Multi-messenger Astronomy from the largest particle collider
- 2. Observational window on "strong" gravity
- 3. Search for "exotic" objects + new physics

BUT

Weak signal (much noise)

- 1. Multi-messenger Astronomy from the largest particle collider
- 2. Observational window on "strong" gravity
- 3. Search for "exotic" objects + new physics

- 1. Multi-messenger Astronomy from the largest particle collider
- 2. Observational window on "strong" gravity
- 3. Search for "exotic" objects + new physics

Motivation

2-body problem in Gravity

Inspiral

<u>Merger</u>

<u>Ringdown</u>

Motivation

2-body problem in Gravity

	1PM	2PM	3PM	4PM	5PM		
0SF	$\left[(G m_1) \right]$	$+(G m_1)^2$	$+(G m_1)^3$	$+(G m_1)^4$	$+(G m_1)^5$	·+]	$\times m_2$
1SF			$\left[(G m_1)^2 \right]$	$+(G m_1)^3$	$+(G m_1)^4$	·+]	$\times G m_2^2$
2SF					$\left[(G m_1)^3 \right]$	+]	$\times G^2 m_2^3$

[Rothstein, Goldberger, Porto, Bern, Kosower,

O'Connell, Vanhove, Damgard, Plefka et al.]

GR perturbation

[Damour, Blanchet, Buonanno et al.] [Poisson, Barack, Pound et al.]

EFT+Scattering Amplitudes (quick review)

<u>Tower of EFTs</u> (focus on worldline approaches) [1601.04914] Porto [1807.01699] Levi

EFT+Scattering Amplitudes (quick review)

Rothstein Goldberger Porto, Steinhoff et al.

 $\mathcal{S}_{p.p.} = -\left[d\tau \left[m\sqrt{u^2} + \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu}\right] + \left[d\tau \ Q_E^{ij}(\tau)E_{ij}(x) + \dots + (E \to B)\right]\right]$ 1) Point-particle approximation: point particle with spin finite size **<u>2)</u> GR as EFT:** $S_{eff} = \frac{1}{16\pi G_N} \int d^d x \sqrt{g} R + \mathcal{O}(R^2, R_{\mu\nu}R^{\mu\nu,...}), \quad g_{\mu\nu} = \eta_{\mu\nu} + \sum_{\substack{n=1\\ \text{Donoghue et al.}}} h_{\mu\nu}^{(n)} \frac{\text{DeWitt}}{\text{Donoghue et al.}}$ generic and adaptable to modifications of GR 3) Feynman rules + loop-Diagrams: **Multi-loop Feynman Integrals** Boundary to Bound [1910.03008] [2109.05994] [1911.09130] Saketh, Vines (B2B) map Steinhoff, Buonanno Kalin, Porto 4) Mappings between kinematics regions: Hamiltonian reconstruction Cheung, Rothstein, Solon [1808.02489] /EFT matching [1906.01579] 16 Cristofoli, Bjerrum-Bohr, Damgaard, Vanhove

EFT+Scattering Amplitudes

WHY QFT methods?

EFT+Scattering Amplitudes

- Recycle knowledge from particle physics + Efficiency
- Clean setup to treat divergencies (Dim. Reg., distinction of IR-UV)
- Tools for integrand construction (Generalized unitarity+Double Copy)
- Solving Feynman integrals instead of D.E.s (IBPs+Reverse Unitarity+D.E.)

EFT+Scattering Amplitudes

Post-Minkowskian

Gravitational Bremsstrahlung: Concrete example of "advantage" of Amplitude approach

THE GENERATION OF GRAVITATIONAL WAVES. IV. BREMSSTRAHLUNG*†‡

SÁNDOR J. KOVÁCS, JR. W. K. Kellogg Radiation Laboratory, California Institute of Technology

AND

KIP S. THORNE

Center for Radiophysics and Space Research, Cornell University; and W. K. Kellogg Radiation Laboratory, California Institute of Technology Received 1977 October 21: accepted 1978 February 28

ABSTRACT

This paper attempts a definitive treatment of "classical gravitational bremsstrahlung"-i.e., of the gravitational waves produced when two stars of arbitrary relative mass fly past each other with arbitrary relative velocity v, but with large enough impact parameter that

(angle of gravitational deflection of stars' orbits) $\ll (1 - v^2/c^2)^{1/2}$.

 $P_{rad}^{\mu} = \frac{G^3 m_1^2 m_2^2}{h^3} \frac{u_1^{\mu} + u_2^{\mu}}{\nu + 1} \epsilon(\gamma) + \mathcal{O}(G^4) \quad \text{no general closed form for } \epsilon(\gamma) !!$

EFT+Scattering Amplitudes

Post-Minkowskian

Gravitational Bremsstrahlung: Concrete example of "advantage" of Amplitude approach

$$P_{\rm rad}^{\mu} = \int d\Omega \, du \, r^2 \, n^{\mu} \, \dot{h}_{ij} \dot{h}_{ij} = \sum_{\lambda} \int_k \delta_+ (k^2) k^{\mu} \left| \left(\mathcal{A}_{\lambda} \right)^k \right|^2$$

 $\mathcal{A}_{\lambda}^{(2)}(k) \propto \begin{bmatrix} k \\ k \end{bmatrix}$

plugging in doesn't give closed solution. (similar problem as Kovacs-Thorne)

EFT+Scattering Amplitudes

Post-Minkowskian

Gravitational Bremsstrahlung: Concrete example of "advantage" of Amplitude approach

$$P_{\rm rad}^{\mu} = \int d\Omega \, du \, r^2 \, n^{\mu} \, \dot{h}_{ij} \dot{h}_{ij} = \sum_{\lambda} \int_{k} \delta_{+} (k^2) k^{\mu} \left| \left(A \right)^{k} \left| \left(A \right)^{k} \right|^2 2110.10140 \text{] Riva, Vernizzi}$$

BUT if we think like:
$$P_{\rm rad}^{\mu} = \sum_{\lambda} \int_{k} k^{\mu} \left(\tilde{T} \right)^{k} \left(\tilde{T}$$

EFT+Scattering Amplitudes

Post-Minkowskian

Gravitational Bremsstrahlung: Concrete example of "advantage" of Amplitude approach

THE GENERATION OF GRAVITATIONAL WAVES. IV. BREMSSTRAHLUNG*[†][‡]

SÁNDOR J. KOVÁCS, JR. W. K. Kellogg Radiation Laboratory, California Institute of Technology

AND

KIP S. THORNE

Center for Radiophysics and Space Research, Cornell University; and W. K. Kellogg Radiation Laboratory, California Institute of Technology Received 1977 October 21; accepted 1978 February 28

ABSTRACT

This paper attempts a definitive treatment of "classical gravitational bremsstrahlung"—i.e., of the gravitational waves produced when two stars of arbitrary relative mass fly past each other with arbitrary relative velocity v, but with large enough impact parameter that

(angle of gravitational deflection of stars' orbits) $\ll (1 - v^2/c^2)^{1/2}$.

 $P_{rad}^{\mu} = \frac{G^3 m_1^2 m_2^2}{b^3} \frac{u_1^{\mu} + u_2^{\mu}}{\gamma + 1} \epsilon(\gamma) + \mathcal{O}(G^4) \quad \text{no general closed form for } \epsilon(\gamma) !!$

UNLESS recast as 2-loop on-shell+Reverse Unitarity

[2101.07255] Hermann et al. [**2102.08339**] **S.M.** et al. [2101.12688] Jakobsen et al. [2104.03256] DVHRV

EFT+Scattering Amplitudes

WHY QFT methods?

- **Recycle knowledge from particle physics + Efficiency**
- Clean setup to treat divergencies (Dim. Reg., distinction of IR-UV)
- Tools for integrand construction (Generalized unitarity+Double Copy)
- Solving Feynman integrals instead of D.E.s (IBPs+Reverse Unitarity+D.E.)
- Recasting the computation might overcome problems of traditional methods!!!

Schwarzschild from Amplitudes to all orders in G

[2407.09448],[2405.14421] S.M., P. Vanhove

Expectation: n-loop diagrams generate G_N^{n+1} terms of the metric

[2407.09448],[2405.14421] S.M., P. Vanhove

Main problems from previous attempts: [2010.08882] S.M., Vanhove

- 1. Infinite tower of *non-minimal couplings* (due to intermediate UV-divs)
- 2. No algorithm for higher loops (3-loops was already complicated)

[2407.09448],[2405.14421] S.M., P. Vanhove

Take a step back

[2407.09448],[2405.14421] S.M., P. Vanhove

Cubic formulation of GREFT

[1705.00626] Cheung, Remmen

Choice of DOFs: 1)Gothic metric: $g^{ab} = \sqrt{-g}g^{ab} = \eta^{ab} - \sqrt{32\pi G_N}h^{ab}$

(GR people do it, we should pay more attention)

2) Extra Auxiliary field :
$$A^a_{bc} = \Gamma^a_{bc} - \frac{1}{2} \delta^a_{(b} \Gamma^d_{c)d}$$
.

(unorthodox but necessary to constrain to 3pt vertices)

Choice of Gauge: harmonic gauge*(non unique)

+ couple to worldline
$$\mathcal{L}_{p.p.} = -\frac{m}{2} \int d\tau \left(e^{-1} g^{\mu\nu} v_{\mu} v_{\nu} + e \right) = -\frac{m}{2} \int d\tau \left(\frac{\mathfrak{g}^{\mu\nu} v_{\mu} v_{\nu}}{(\sqrt{-\mathfrak{g}})^{\frac{2}{D-2}}} + 1 \right)$$

[2407.09448],[2405.14421] S.M., P. Vanhove

Cubic formulation of GREFT

$$\begin{array}{ll} \underbrace{\text{Complete ansatz:}}_{\substack{\text{Single} \\ multi-loop}} & \sqrt{32\pi G_N} h_{\mu\nu}^{(n)}(\mathbf{x}) = \int d^{D-1}x \ e^{i\mathbf{k}\mathbf{x}} \ J_{\mu\nu}^{(n)}(\mathbf{k}), \\ \underbrace{\text{Single} \\ multi-loop} \\ \text{Master Integral} & \sqrt{32\pi G_N} A_{bc}^{a\ (n)}(\mathbf{x}) = \int d^{D-1}x \ e^{i\mathbf{k}\mathbf{x}} \ Y_{bc}^{a\ (n)}(\mathbf{k}), \\ J_{\mu\nu}^{(n)}(\mathbf{k}) = \rho(|\mathbf{k}|, D, n) \ \left(\chi_1^{(n)} \delta_{\mu}^0 \delta_{\nu}^0 + \chi_2^{(n)} \eta_{\mu\nu} + \chi_3^{(n)} \frac{k_{\mu}k_{\nu}}{\mathbf{k}^2}\right) \\ Y_{bc}^{a\ (n)}(\mathbf{k}) = -i\rho(|\mathbf{k}|, D, n) \ \left(k_{(b} \ \left(\chi_7^{(n)} \delta_c^0 \delta_0^a + \chi_8^{(n)} \delta_c^a\right)\right) \\ & + k^a \ \left(\chi_4^{(n)} \delta_b^0 \delta_c^0 + \chi_5^{(n)} \eta_{bc} + \chi_6^{(n)} \frac{k_b k_c}{\mathbf{k}^2}\right) \right). \end{aligned}$$

[2407.09448],[2405.14421] S.M., P. Vanhove

Cubic formulation of GREFT

[2407.09448],[2405.14421] S.M., P. Vanhove

Cubic formulation of GREFT

[2407.09448],[2405.14421] S.M., P. Vanhove

Metric to all orders in G

Recursion relations

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

SF expansion:
$$S = S_{EH} + S_l + S_{H_2}$$
 $S_H = -\frac{M}{2} \int d\tau_H \left(\frac{\mathfrak{g}^{\mu\nu} v_{H\mu} v_{H\nu}}{(\sqrt{-\mathfrak{g}})^{\frac{2}{D-2}}} + 1 \right) \frac{h-point gravitor}{to PM-expansion}$

$$e^{i\mathcal{S}_{\text{eff}}[x_l,x_H]} = \int \mathcal{D}h \ \mathcal{D}A \ e^{i\mathcal{S}_{EH}[h,A] + i\mathcal{S}_{GF}[h] + i\mathcal{S}_l[x_l,h] + i\mathcal{S}_H[x_H,h]}$$

integrate-out via diagrams

$$\mathcal{S}_{\text{eff}} = -\frac{M}{2} \int d\tau_H \ \eta^{\mu\nu} v_{H\mu} v_{H\nu} + M \sum_{n=0}^{\infty} \int d\tau_l \ \left(\frac{m}{M}\right)^{n+1} \mathcal{L}_n[x_l(\tau_l), x_H(\tau_H)]$$

+**SF expand trajectories**
$$x_l^{\mu}(\tau_l) \equiv x^{\mu}(\tau) = \sum_{n=0}^{\infty} \left(\frac{m}{M}\right)^n \delta x^{(n)\,\mu}(\tau), \ x_H^{\mu}(\tau_H) = u_H^{\mu}\tau_H + \sum_{n=1}^{\infty} \left(\frac{m}{M}\right)^n \delta x_H^{(n)\,\mu}(\tau_H)$$

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

SF expansion:
$$S_{\text{eff}} = -\frac{M}{2} \int d\tau_H \ \eta^{\mu\nu} v_{H\mu} v_{H\nu} + M \sum_{n=0}^{\infty} \int d\tau_l \ \left(\frac{m}{M}\right)^{n+1} \mathcal{L}_n[x_l(\tau_l), x_H(\tau_H)]$$

where $J_{\mu\nu}(\mathbf{k}) = \begin{cases} = \sum_{n=1}^{\infty} J_{\mu\nu}^{(n)}(\mathbf{k}) & 2 \end{cases}$ Effective 1pt contains an <u>infinite</u> series -<u>dressed graviton emission</u>-, <u>already known</u>

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

We managed to perform explicitly the resummation of the above infinite diagrams where each one contains an infinite sum-*double resummation*!

Conclusion

Classical GR through the lens of QFT approach

- 1. Efficiently <u>exploits</u> previous knowledge from particle physics
- 2. Possibly <u>overcomes shortcomings</u> of other methods
- 3. Easily applicable to <u>GR extensions</u>
- 4. Done well in PN, PM. Needs to be extended for SF
- Non-perturbative, EFT-based approach can be used for <u>questions regarding BHs</u> (Love numbers, quantum effects etc.)

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

2) Effective 1pt contains an <u>infinite</u> series -<u>dressed graviton emission</u>-

$$\begin{aligned} \mathcal{I}_{\alpha_{1}\beta_{1},\ldots,\alpha_{L}\beta_{L}}^{(L)} &= \int_{\mathbb{R}^{3}} \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}(\tau)} \int_{\mathbb{R}^{3L}} \prod_{i=1}^{L} \frac{d^{3}\mathbf{q}_{i}}{(2\pi)^{3}} \delta^{(3)} \left(\sum_{i=1}^{L} \mathbf{q}_{i} - \mathbf{k} \right) \\ &\times \sum_{n_{1}=1}^{\infty} \cdots \sum_{n_{L}=1}^{\infty} \rho(|\mathbf{q}_{i}|, n_{i}) \left(\chi_{1}^{(n_{i})} \delta_{\alpha_{i}}^{0} \delta_{\beta_{i}}^{0} + \chi_{2}^{(n_{i})} \left(\eta_{\alpha_{i}\beta_{i}} - \frac{q_{i,\alpha_{i}}q_{i,\beta_{i}}}{\mathbf{q}_{i}^{2}} \right) \right) \end{aligned}$$

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

2) Effective 1pt contains an <u>infinite</u> series -dressed graviton emission-

Fourier before loop integration decouples the multi-loops!!

$$\mathcal{I}_{\alpha_1\beta_1,\dots,\alpha_L\beta_L}^{(L)} = \rho^{2L} \prod_{i=1}^L \left(\delta^0_{\alpha_i} \delta^0_{\beta_i} \left(\frac{4(1+\rho)}{\rho(1-\rho)} - 1 \right) + n_{\alpha_i} n_{\beta_i} \right)$$

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

$$\mathcal{L}_{0}[x^{\mu}(\tau), u^{\mu}_{H}\tau_{H}] = \bullet + \underbrace{\underbrace{}}_{k} + \underbrace{\underbrace{}}_{k} \underbrace{\underbrace{}}_{k} + \underbrace{\underbrace{}}_{k} \underbrace{\underbrace{}}_{k} + \underbrace{\underbrace{}}_{k} \underbrace{\underbrace{}}_{k} \underbrace{}_{k} + \underbrace{\underbrace{}}_{k} \underbrace{\underbrace{}}_{k} \underbrace{}_{k} + \underbrace{\underbrace{}}_{k} \underbrace{\underbrace{}}_{k} \underbrace{}_{k} \underbrace{}_{k}$$

2) Effective 1pt contains an <u>infinite</u> series -<u>dressed graviton emission</u>-

Recursion:
$$\mathcal{I}_{\alpha_1\beta_1,\dots,\alpha_L\beta_L}^{(L)} = \mathcal{I}_{\alpha_1\beta_1,\dots,\alpha_{L-1}\beta_{L-1}}^{(L-1)}\rho^2 \left(\delta^0_{\alpha_L}\delta^0_{\beta_L}\left(\frac{4(1+\rho)}{\rho(1-\rho)}-1\right)+n_{\alpha_L}n_{\beta_L}\right)$$

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

$$\mathcal{L}_{0}[x^{\mu}(\tau), u_{H}^{\mu}\tau_{H}] = \bullet + \underbrace{\underbrace{}}_{k} + \underbrace{\underbrace{}}_{k} \underbrace{\underbrace{}}_{k} \underbrace{}_{k} + \underbrace{\underbrace{}}_{k} \underbrace{\underbrace{}}_{k} \underbrace{}_{k} \underbrace{}_{k}$$

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

$$\begin{aligned} \mathcal{I}_{\alpha_{1}\beta_{1},...,\alpha_{L}\beta_{L}}^{(L)}\mathcal{T}_{(L)}^{\mu\nu\alpha_{1}\beta_{1},...,\alpha_{L}\beta_{L}} &= -\eta^{\mu\nu}\mathcal{I}_{\alpha_{1}\beta_{1},...,\alpha_{L}\beta_{L}}^{(L)}\mathcal{P}_{(L)}^{\alpha_{1}\beta_{1},...,\alpha_{L}\beta_{L}} \\ &+ \mathcal{I}_{\alpha_{1}\beta_{1},...,\alpha_{L-1}\beta_{L-1}}^{(L-1)}\mathcal{P}_{(L-1)}^{\alpha_{1}\beta_{1},...,\alpha_{L-1}\beta_{L-1}}\rho^{2} \left(\delta_{0}^{\mu}\delta_{0}^{\nu} \left(\frac{4(1+\rho)}{\rho(1-\rho)} - 1\right) + n^{\mu}n^{\nu}\right) \end{aligned}$$

and from $\sum_{L=1}^{\infty} \mathcal{P}_{(L)}^{\alpha_1\beta_1,\dots,\alpha_L\beta_L} \mathcal{I}_{\alpha_1\beta_1,\dots,\alpha_L\beta_L}^{(L)} = \left(-\det\left[\eta^{\mu\nu} - \rho^2\left(\delta_0^{\mu}\delta_0^{\nu}\left(\frac{4(1+\rho)}{\rho(1-\rho)} - 1\right) + n^{\mu}n^{\nu}\right)\right]\right)^{-\frac{1}{2}} - 1$

[2407.09448],[2405.14421] S.M., P. Vanhove

Geodesic motion (0SF)

$$\sum_{L=1}^{\infty} \mathcal{P}_{(L)}^{\alpha_1 \beta_1, \dots, \alpha_L \beta_L} \mathcal{I}_{\alpha_1 \beta_1, \dots, \alpha_L \beta_L}^{(L)} = \frac{1}{(1+\rho)^2} - 1.$$

$$\sum_{L=1}^{\infty} \mathcal{I}_{\alpha_1\beta_1,\dots,\alpha_L\beta_L}^{(L)} \mathcal{T}_{(L)}^{\mu\nu\alpha_1\beta_1,\dots,\alpha_L\beta_L} = \frac{\rho}{(1+\rho)^2} \left(\delta_0^{\mu} \delta_0^{\nu} \left(\frac{4(1+\rho)}{(1-\rho)} - \rho \right) + (\rho+2) \eta^{\mu\nu} + \rho \ n^{\mu} n^{\nu} \right)$$