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Introduction



The three stages of a binary

Inspiral Merger Ringdown 

Post Newtonian 
Theory 

Perturbation 
Theory 

Numerical 
Relativity 

[Antelis & Moreno (2017), arXiv:1610.03567]
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Different techniques for different regions of parameter space

GSF

PNPM
NR

Ignoring spin!
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Post-Newtonian results: what are they used for?

Post-Newtonian dynamics and waveforms are used:

• alone (in time or frequency domain)

• resummed (e.g. Padé resummations)

• inform EOB models (SEOB and TEOB)

• enter phenomenological waveform models (IMRPhenom)

• hybridized with NR

• hybridized with GSF

Advantages:

• first-principle method

• fully analytical

• fast to evaluate

• helps understand physics

Disadvantages:

• only valid in inspiral phase

• slow and oscillating convergence

• degrades for high eccentricity

• degrades for high mass-ratios
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Review of recent post-Newtonian

results



The three sectors of a PN computation

Conservativedynamics Gravitationalradiation

Radiation reaction /dissipative dynamics
𝒂 = 𝒂N + 𝒂1PN + 𝒂2PN + 𝒂2.5PN + …

𝐹 = 𝐹N + 𝐹1PN + 𝐹2PN + 𝐹2.5PN + …
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Relating near-zone and exterior vacuum zone
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• In NZ, obtain PN expansion of metric [up to homogeneous solution]

• In FZ, obtain PM expansion of metric [up to homogeneous solution]

• Both homogeneous solutions obtained by imposing asymptotic

matching in buffer zone 7



Conservative dynamics (nonspinning)

For now, we ignore gravitational radiation and its backreaction

=⇒ focus only on time-even contributions

Dynamics described either by the acceleration or the Hamiltonian

Order

How?
Fokker ADM EFT

3PN [ItFu ‘03][It ‘04] [DaJaSc ‘01] [FoSt ‘11]

[BcDaEs ‘04]

4PN [BeBcBoFaMs ‘17ab] [DaJaSc ‘14] [FoPoRoSt ‘19]

[DaJaSc ‘15] [BüMiMqSc ‘20]

5PN (disputed) [BiDaGe ‘20] (partial) [BüMiMqSc ‘22]

6PN (partial) [BiDaGe ‘20] [BüMrMqSc ‘22]

Be = Bernard, Bi = Bini, Bc = Blanchet, Bo = Bohé, Bü = Blümlein, Da = Damour, Es = Esposito-Farèse, Fa = Faye,

Fu = Futamase, Fo = Foffa, Iy = Itoh, Ja = Jaranowski, Mc = Marchand, Ms = Marsat, Mr = Maier, Mq = Marquard,

Po = Porto, Ro = Rothstein, Sch = Schäfer, St= Sturani 8



Radiation: energy and angular momentum fluxes (nonspinning)

Order

Orbit
Circular Elliptic

2PN

[BcDaIy ‘95] [GoIy ‘97]

[WiWs ‘96]

[LbMiYa ‘19]

3PN [AmYaPo ‘24] [ArBcIyQu ‘08ab]

[ArBcIySh ‘09]

3.5PN [BcFaIyJo ‘05]

4PN [BcFaHeLaTr ‘23]

4.5PN [McBcFa ‘16]

Am = Amalberti, Bc = Blanchet, Da = Damour, Fa = Faye, Go = Gopakumar, He = Henry, Iy = Iyer, Jo = Joguet,

La = Larrouturou, Lb = Leibovich, Ma = Maia, Mc = Marchand, Ms = Marsat, Po = Porto, Tr = Trestini, Wi = Will,

Ws = Wiseman, Ya = Yang,
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Radiation reaction: dissipative EOM (nonspinning)

Order

Method
Balance-laws Matching

Coordinates Parametrized Harmonic Burke-Thorne

3.5PN
[IyWi ‘95] [PtWi ‘02] [Bc ‘93][Bc ‘97]

[NiBc ‘05] [IyWi ‘95]

4PN (tails) [BcDa ‘88]

4.5PN [GoIyIy ‘98] [LbPrYa ‘23] [BcFaTr ‘24]

Bc = Blanchet, Fa = Faye, Go = Gopakumar, Iy = Iyer, Lb = Leibovich, Ni = Nissanke, Pd = Pardo, Pt = Pati,

Tr = Trestini, Wi = Will, Ya = Yang,
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Equations of motion at 4.5PN



What are we computing exactly?

m1

2m

v1

2
v

r12

CM

dvi12
dt

= −Gm2

r212
ni12 +

1PN︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r312
+ ...

]
ni12 + ...

}
+

2PN︷ ︸︸ ︷
1

c4

[
...

]

+
1

c5

[
...

]
︸ ︷︷ ︸

2.5PN

radiation reaction

+
1

c6

[
...

]
︸ ︷︷ ︸

3PN

+
1

c7

[
...

]
︸ ︷︷ ︸

2.5PN

radiation reaction

+
1

c8

[
...

]
︸ ︷︷ ︸

4PN

+
1

c9

[
...

]
︸ ︷︷ ︸

2.5PN

radiation reaction

+ O
(

1

c10

)
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Metric

The metric reads

g00 = −1 +
2

c2
V − 2

c4
V 2 +

8

c6

[
X̂ + ViVi +

1

6
V 3

]
+O

(
8, 13

)
,

g0i = − 4

c3
Vi −

8

c5
R̂i +O

(
7, 12

)
,

gij = δij

[
1 +

2

c2
V +

2

c4
V 2

]
+

4

c4
Ŵij +O

(
6, 11

)
where potentials divided into symmetric and radiation reaction parts

V = Vsym + VRR , Vi = V i
sym + V i

RR , Ŵij = Ŵ ij
sym + V ij

RR

Usually, we use retarded operator □̃−1
ret (conservative + dissipative

effects). Here, RR piece is obtained by matching to the exterior metric,

and other piece defined using the symmetric operator:

□̃−1
sym

[
ταβ

]
≡ FP

B=0
□−1

sym

[
r̃Bταβ

]
=

+∞∑
k=0

(
∂

c∂t

)2k
FP
B=0

∆−k−1
[
r̃Bταβ

]
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Time-antisymmetric piece of metric

The matching procedure tells us that the RR piece of the inner metric =

time-antisymmetric piece of exterior metric (regular in the source!)

h00RR1 = − 4

c2

+∞∑
ℓ=0

(−)ℓ

ℓ!
∂L

{
ML

}
,

h0iRR1 =
4

c3

+∞∑
ℓ=1

(−)ℓ

ℓ!

[
∂L−1

{
M

(1)
iL−1

}
+

ℓ

ℓ+ 1
εiab∂aL−1

{
SbL−1

}]
,

hijRR1 = − 4

c4

+∞∑
ℓ=2

(−)ℓ

ℓ!

[
∂L−2

{
M

(2)
ijL−2

}
+

2ℓ

ℓ+ 1
∂aL−2

{
εab(iS

(1)
j)bL−2

}]
,

where {
f
}
(t, r) ≡ f(t− r/c)− f(t+ r/c)

2r
= −f

′(t)

c
+O

(
r2

c3

)
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Generalized Burke-Thorne gauge

The previous metric has the structure:

h00RR1 = O(c−2), h0iRR1 = O(c−3), hijRR1 = O(c−4)

Generalized Burke-Thorne gauge transform: h′µνRR1 = hµνRR1 + (∂ξ1)
µν

[Blanchet, PRD 47, 4392 (1993)]

Obtain the structure:

h′00RR1 = O(c−7), h′0iRR1 = O(c−6), h′ijRR1 = O(c−5)

Radiation reaction corrections enter at much higher PN order in this

gauge! Thus, define the RR potentials:

h′ 00RR1 = − 4

Gc2
VRR, h′ 0iRR1 = − 4

Gc3
V i
RR, h′ ijRR1 = − 4

Gc4
V ij
RR

14



Radiation reaction potentials in terms of (ML, SL)

VRR = − G

5c5
xabM

(5)
ab +

G

c7

[
1

189
xabcM

(7)
abc −

1

70
r2xabM

(7)
ab

]
+
G

c9

[
− 1

9072
xabcdM

(9)
abcd +

1

3402
r2xabcM

(9)
abc

− 1

2520
r4xabM

(9)
ab

]
+O

(
1

c11

)
V i
RR =

G

c5

[
1

21
x̂iabM

(6)
ab − 4

45
εiabx

acS
(5)
bc

]
+
G

c7

[
− 1

972
x̂iabcM

(8)
abc +

1

378
r2x̂iabM

(8)
ab

+
1

336
εiabx̂

acdS
(7)
bcd −

2

315
εiabr

2x̂acS
(7)
bc

]
+O

(
1

c9

)
V ij
RR =

G

c5

[
− 1

108
x̂ijabM

(7)
ab +

2

63
εab(ix̂

j)acS
(6)
bc

]
+O

(
1

c7

)
We know the (ML, SL) at this order, so this is very easy to compute
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Symmetric potentials

The symmetric potentials are defined as

Vsym = □̃−1
sym

[
− 4πGσ

]
,

V i
sym = □̃−1

sym

[
− 4πGσi

]
,

Ŵ ij
sym = □̃−1

sym

[
− 4πG

(
σij − δijσkk

)
− ∂iV ∂jV

]
,

R̂i
sym = □̃−1

sym

[
− 4πG

(
V σi − Viσ

)
− 2∂kV ∂iVk −

3

2
∂tV ∂iV

]
,

X̂sym = □̃−1
sym

[
− 4πGV σkk + Ŵij∂ijV + 2Vi∂t∂iV + V ∂2t V

+
3

2
(∂tV )2 − 2∂iVj∂jVi

]
.

They involve time derivatives (so the RR acceleration appears), and they

are sourced by V = Vsym + VRR, etc., so they also contribute to

the RR !

This contribution can be expressed in terms of (ML, SL).
16



Acceleration in terms of potentials

The equations of motion are obtained by writing ∇βT
αβ = 0 where

Tµν =
m1v

µ
1 v

ν
1δ(x− y1)√

−(g)1
√

−(gαβ)1v
µ
1 v

ν
1/c

2
+

m2v
µ
2 v

ν
2δ(x− y2)√

−(g)2
√

−(gαβ)2v
µ
2 v

ν
2/c

2

Metric evaluated on each particle with Hadamard regularization.

In terms of potentials, reads

ai1 =

(
∂iV +

1

c2

[
(v21 − 4V )∂iV + 4∂tVi − 8vj∂[iVj] − 3vi1∂tV − 4vi1v

j
1∂jV

]
+

1

c4

[
4vi1Vj∂jV + 4vi1v

j
1v

k
1∂jVk + 8vj1Vi∂jV + 8∂tR̂

i + vi1v
2
1∂tV + 4Vi∂tV

− 8V ∂tVi − 4vj1∂tŴij + 8vj1∂jR̂i − 8V vj1∂jVi − 4Ŵij∂jV − 4vj1v
k
1∂kŴij

− 8vj1∂iR̂j + 8V 2∂iV + 8V vj1∂iVj + 8Vj∂iVj + 2vj1v
k
1∂iŴjk + 4∂t∂iX̂

])
1

+O(6, 11)

RR contributions come from both piece of V = Vsym + VRR, etc.
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Acceleration in terms of multipolar moments

We obtain the acceleration in terms of the multipolar moments at 4.5PN
[Blanchet, Faye & DT (2024), 2407.18295 ]

ai2.5PN 1 = − 2G

5c5
ya1M

(5)
ia

ai3.5PN 1 =
G

c7

{
− 11

105
yb1M

(7)
ib y

2
1 +

17

105
yiab1 M

(7)
ab − 8

15
yb1M

(6)
ib (v1y1)

+M
(6)
ab

( 8

15
ybi1 v

a
1 +

3

5
vi1y

ab
1

)
− 2

5
yb1M

(5)
ib v

2
1

+
GM

(5)
ia

r12

(7
5
m2n

a
12r12 +

1

5
m2y

a
1

)
+M

(5)
ab

[
8

5
vbi1 y

a
1 +

G

r12

(1
5
nbi12m2y

a
1 − m2n

i
12

r12
yab1

)]
+

1

63
M

(7)
iaby

ab
1 − 16

45
εibjS

(6)
aj y

ab
1 − 16

45
εibjv

a
1y

b
1S

(5)
aj

− 32

45
εiajv

a
1y

b
1S

(5)
bj +

16

45
εabjv

a
1y

b
1S

(5)
ij

}
ai4.5PN 1 = (very long !)

We can also replace the multipolar moments and get the acceleration in

terms of (y1,y2,v1,v2)
18



Flux balance laws

We know with 4PN accuracy the four Poincaré invariants Econs, J
i
cons,

P i
cons, and G

i
cons which are conserved by the conservative dynamics.

We also know their associated fluxes at infinity, FE , F i
J , F i

P , F i
G

We have explicitly proven all four balance laws with 2PN accuracy:
[Blanchet, Faye & DT (2024), 2407.18295]

d

dt
[Hcons +HRR] = −FH

where

• H stands generically for E, J i, P i, and Gi

• HRR is a Schott term which we control

• the time derivative is taken with our newly computed 4.5PN

acceleration

19



Defining the center-of-mass frame

Integrating the flux balance equations yields

P i(t) = P i
0 −

∫ t

t0

dt′FP (t′)

Gi(t) = Gi
0 + P i

0(t− t0)−
∫ t

t0

dt′FG(t′)−
∫ t

t0

dt′
∫ t′

t0

dt′′FP (t′′)

where t0 = initial time, before emission of GWs

Apply Lorentz boost ⇒ rest frame of initial system: P i
0 = 0 and Gi

0 = 0

Send t0 → −∞. The conditions to be in the CM frame are:

Gi(t) + Γi(t) = 0 =⇒ P i(t) + Πi(t) = 0

where

Πi(t) =

∫ t

−∞
dt′FP (t′)

Γi(t) =

∫ t

−∞
dt′FG(t′) +

∫ t

−∞
dt′Πi(t′)

20



Gravitational recoin: circular orbits

m
1

m
2

V
recoil

CM motion

dP
dt

GW

dP
dt

CM dP
dt

GW= –

v
1

v
2

21



Gravitational recoil: secular effect for eccentric orbits

Asymmetric binary

More GWsFewer GWs

GWs that escaped toinfinity contribute to thecenter-of-mass frame

In the center of mass frame

More GWs𝒗𝐶𝑀Fewer GWs

Gravitational recoil

22



Passage to the CM frame

Solving iteratively for the yi1 in Gi + Γi = 0, we find

yi1 = xi
(
X2 + ν∆P

)
+ ν∆Q vi︸ ︷︷ ︸

matter contribution

obtained by solving for yi1 in Gi = 0

+
(

Ri
)

︸ ︷︷ ︸
radiation contribution

where [Blanchet, Faye & DT (2024), 2407.18295]

Ri =
(
− Γi

m

)
︸ ︷︷ ︸

3.5PN

+
ν

mc2

[(
v2

2
− Gm

r

)
Γi + vj

(
Πj + F j

G

)
xi
]

︸ ︷︷ ︸
4.5PN

+O(11)
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Why previous results are unaffected

This new nonlocal term enters at 3.5PN! Does it affect previous results ?

• The EOM are not affected at 3.5PN:

ai12 =
Gm

r12
ni12 + (higher order terms)

=⇒
go to CM frame

ai =
Gm

r
ni + 0 + (higher order terms)

But this affects 4.5PN EOM of [Leibovich, Pardo & Yang (2023), 2302.11016]

• The 3.5PN flux is not affected because of the structure of the

quadrupole moment:

Iij = m1y
⟨i
1 y

j⟩
1 +m2y

⟨i
2 y

j⟩
2 + (higher order terms)

=⇒
go to CM frame

(Iij)CM = mνr2n⟨in⟩j + 0 + (higher order terms)

This is not true for other moments!
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The equations of motion in the CM frame

In the CM frame, we find [Blanchet, Faye & DT (2024), 2407.18295]

aiRR = ai2.5PN + ai3.5PN + ai4.5PN

∣∣∣
mat

+ ai4.5PN

∣∣∣
rad
.

where

a
i
2.5PN =

8G2m2ν

c5r3

[
v
i
( 2Gm

5r
+ 3ṙ

2 −
6

5
v
2
)
+ n

i
ṙ
( 2Gm

15r
− 5ṙ

2
+

18

5
v
2
)]

a
i
3.5PN =

8G2m2ν

c7r3

[
v
i
((

−
776

105
−

11

3
ν
)G2m2

r2
+

( 5

2
−

35

2
ν
)
ṙ
4
+

(
−

39

10
+

111

10
ν
)
ṙ
2
v
2

+
Gm

r

[(
−

2591

60
−

97

5
ν
)
ṙ
2
+

( 4861

420
+

58

15
ν
)
v
2
]
+

27

70
v
4
)

+ n
i
ṙ

(( 32

7
+

11

3
ν
)G2m2

r2
+

(
−

7

2
+

7

2
ν
)
ṙ
4
+

( 5

2
+

25

2
ν
)
ṙ
2
v
2

+
Gm

r

[( 1353

20
+

133

5
ν
)
ṙ
2
+

(
−

5379

140
−

136

15
ν
)
v
2
]
+
( 87

70
−

48

5
ν
)
v
4
)]

a
i
4.5PN

∣∣∣
mat

= (......)

and

ai4.5PN

∣∣∣∣
rad

=
G∆

r2c2
(
2nivj + njvi

) [
Πj + F j

G

]
.
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Balance equations in the CM frame

Express 2PN conserved quantities, E and J i, in the CM frame:

E = E
∣∣∣
mat

+ E
∣∣∣
rad

J i = J i
∣∣∣
mat

+ J i
∣∣∣
rad

where

E
∣∣∣
rad

=
ν∆

c2
v2vi

[
Πi + F i

G

]
E
∣∣∣
mat

= (.....)

J i
∣∣∣
rad

=
ν∆

c2
εijkx

jvkvq
[
Πl + F l

G

]
J i
∣∣∣
mat

= (....)

We check explicitly that:

dECM

dt

∣∣∣∣
aiCM

= − (FE)CM
dJ i

CM

dt

∣∣∣∣
aiCM

= − (FJ )CM

Important consistency check ! If we had we ignored the radiation

contribution (i.e. set Ri = 0 like [Leibovich, Pardo & Yang (2023), 2302.11016]),

then we would not recover this balance equation in the CM frame!
26



Link with Gopakumar, Iyer and Iyer (GII) 1998

In [Gopakumar, Iyer & Iyer (1998), gr-qc/9703075], the EOM of motion are

obtained by assuming a general parametrized ansatz for the structure of

aiCM, ECM and J i
CM, and putting constraints of the parameters by asking

that the balance equations for E and J be satisfied in the CM frame.

Different accelerations associated to different parameters are proven to

be related by a gauge transformation.

But they make a crucial assumption: aiCM, ECM and J i
CM are taken to be

local-in-time ! And we have proven the contrary.

The parametrization cannot be correct because it does not feature a

nonlocal term at 4.5PN!

27



Correction to the parametrization of GII

We correct the parametrization

ãiRR = aiGIIRR +
G∆

r2c2
(
2nivj + njvi

) [
Πj + F j

G

]
− ∆

mc2
vivj

[
F j
P + Ḟ j

G

]
ẼRR = EGII

RR +
ν∆

c2
v2vi

[
Πi + F i

G

]
,

J̃RR = J iGII
RR +

ν∆

c2
εijkx

jvkvl
[
Πl + F l

G

]
.

These new expressions are also compatible with the flux-balance

equations and feature the correct nonlocal terms.

28



Parameters of (corrected) GII corresponding to our result

The solution we found corresponds to the set of parameters:

α3 = 5 β2 = 4

ξ1 = −99
14 + 27ν ξ2 = 5− 20ν

ξ3 =
274
7 + 67

21ν ξ4 =
5
2 − 5

2ν

ξ5 = −292
7 − 57

7 ν ρ5 =
51
28 + 71

14ν

ψ1 = −94
63 + 4325

168 ν −
1663
12 ν

2 ψ2 = −2347
42 + 13649

56 ν − 925
84 ν

2

ψ3 =
2746
21 − 80723

252 ν +
148
3 ν

2 ψ4 =
870
7 − 12725

24 ν + 1730
7 ν2

ψ5 = −541
14 − 4885

42 ν +
803
21 ν

2 ψ6 = −50263
189 + 110122

189 ν + 18832
189 ν

2

ψ7 = −1145
18 + 9395

36 ν −
8815
72 ν

2 ψ8 =
7856
63 − 58025

252 ν −
947
9 ν

2

ψ9 =
9101
126 + 1831

12 ν −
9103
189 ν

2 χ6 = −16309
504 + 11315

84 ν − 827
56 ν

2

χ8 =
5465
126 − 11075

84 ν + 4175
168 ν

2 χ9 = −191
756 − 5167

378 ν +
36499
252 ν

2

Any other set of parameters is equally correct, but in a different gauge!
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Localizing the nonlocal term for circular orbits

Suppose that the motion has been eternally quasicircular, departing from

exact circularity only adiabatically due to radiation reaction.

We can compute the nonlocal terms:

Πi = −464

105

G4m5

c7r4
∆ ν2 ni +O(9) (1)

Γi =
48

5

G3m4

c7r2
∆ ν2 vi +O(9) (2)

Injecting into the full (conservative + dissipative) accelerations, we find::

aicirc = −ω2xi − 32G3m3ν

5c5r4
vi

[
1 + γ

(
−743

336
− 11

4
ν

)
+ 4πγ3/2

+ γ2
(
−34639

18144
− 12521

2016
ν +

5

4
ν2
)
+O(γ5/2)

]
where γ = Gm

c2r
and the conservative section ω is known at 4PN
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Conclusion

• Radiation reaction at 2PN ⇔ equation of motion obtained at 4.5PN

• Prove flux-balance laws at 2PN for E, J , P , G

• Going to CM frame requires accounting for radiation contribution

• Nonlocal contribution in passage to CM frame at 3.5PN

• Nonlocal contribution in equations of motion at 4.5PN

• Recover flux balance laws at 2PN in CM frame (nonlocal !)

• Corrected Gopakumar-Iyer-Iyer parametrization

• Localization for circular orbits
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