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Toward the era of precision physics with gravitational waves

• Upcoming era of precision physics with 
gravitational waves holds the promise of 
important breakthroughs and new discoveries. 

• To maximize the science return from the 
increasing number of gravitational-wave 
observations and the discovery potential of 
future detectors, ever more accurate waveform 
templates are necessary. [Maggiore et al. ’19], 
[Sathyaprakash et al. ’19], [Kalogera et al. ’21], [Berti et al. ’21], […] 

• This requires in particular to have a precise 
understanding of the conservative and 
dissipative dynamics of two-body systems, 
which includes tidal effects. [Buonanno et al. ’22],  
[Flanagan and Hinderer ’07], [Henry, Faye and Blanchet ’20], 
[Kälin, Liu, and Porto ‘20], […]
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Tidal deformability of compact objects

• Conservative coefficients (often called Love numbers) and dissipative numbers (or, tidal 
heating) carry relevant information about the object’s structure and interior dynamics: 

 

_ equation of state of neutron stars; [Flanagan and Hinderer ’07], [Vines, Flanagan and Hinderer ’11], [Bini, Damour and Faye 
’12], [Baiotti and Rezzolla ’17], […] 
 

_ physics at the horizon of black holes and fundamental aspects of gravity in strong-field 
regime; [Hui, Joyce, Penco, LS and Solomon ’21, ’22], [Charalambous, Dubovsky and Ivanov ’21], […] 
 

_ new physics and existence of new types of compact objects. 
[Franzin et al. ’17], [Cardoso et al. ’17], [Cardoso and Pani ’19], […]
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• Tidal effects change the dynamics during the inspiral. 

• The tidal deformability is described in terms of a set of 
coefficients, which capture the conservative and 
dissipative induced response. 
[Fang and Lovelace ’05], [Damour and Nagar ’09], [Binnington and Poisson ’05]



Tidal deformability of compact objects
• The measurement of tidal deformation is challenging with current detectors. 

• Example of constraints on tidal heating from LKV O1-O3 data: [Chia, Zhou and Ivanov ’24]. 
Constraints on black hole dissipative coeffs. still 2 orders of magnitudes larger than 
theoretical value. 

• We can search for exotic compact objects (e.g., boson stars, DM stars…) with large . 
Exotic compact objects can easily have Love numbers that are orders of magnitude larger 
than standard objects. 
Example of matched-filtering search for binaries with compact objects with 

: [Chia et al. ’23]. 

• Precise measurements of tidal coefficients possible in the future: 
_ an EMRI detection by LISA could set constraints on the (dimensionless) Love numbers 
of highly-spinning central objects at —  level; [Piovano, Maselli, Pani ’22] 
_ the Einstein Telescope will be able to observe the onset of tidal effects close to the 
merger and pin down very precisely the EoS of neutron stars. [Maggiore et al ’19], [Iacovelli et al ’23], […]

λ

102 ≲ λ ≲ 106

∼ 10−2 10−3
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Outline

I will discuss theoretical aspects of tidal Love numbers of compact objects. 
I will focus on a particular set of subleading tidal effects.  

I. Nonlinear corrections to the tidal deformability of compact objects 
II. Vanishing of nonlinear Love numbers of black holes
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Subdominant tidal effects in binary inspirals

• In the Post-Newtonian (PN) regime of the inspiral, leading-order tidal effects are 
associated with tidal heating, and start from 2.5PN order for spinning objects and 4PN 
order for non-rotating ones. [Poisson and Sasaki ’94], [Tagoshi et al. ’97], [Blanchet ’13], […] 

• Conservative effects start from 5PN. [Damour ’83], [Porto ’16], […] 

• Various reasons to study subdominant effects: 
_ put leading-order results on firmer grounds; 
_ neglecting them might introduce systematics in parameter estimation; 
_ could be useful to recalibrate effective models, improve waveform, break degeneracy 
among observables; 
_ could reveal interesting information on the fundamental aspects of gravity; 
_ especially relevant when leading-order effects vanish, making the next-to-leading-order 
corrections the actual dominant contributions (e.g., black holes). 

• Two types of subleading corrections to Love Numbers (LNs): 
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   (dynamical LNs)ω ≠ 0

nonlinearities



Tidal Love numbers of black holes

• It is well known that the conservative tidal response of Black Holes (BHs) in zero: 
_ Schwarzschild BHs: [Fang and Lovelace ’05], [Binnington and Poisson ‘09], [Damour and Nagar ’09] 
_ Kerr BHs: [Le Tiec, Casals ’20], [Le Tiec, Casals, Franzin ’20], [Chia ’20], [Charalambous, Dubovsky, Ivanov ‘21] 
_ Reissner–Nordström BHs: [Cardoso et al. ’17], [Rai and LS ’24] 

• This is special of 4D general relativity: Love numbers are nonzero for different objects, 
modified gravity theories, BHs in higher spacetime dimensions. 

• The vanishing of the BH Love numbers has been understood in terms of symmetries in 
general relativity: [Hui, Joyce, Penco, LS and Solomon ’21, ’22], [Charalambous, Dubovsky and Ivanov ’21, ’22], [Rai and LS ’24] 

• All these results have been obtained in the context of linear perturbation theory. 
However, general relativity is intrinsically nonlinear. 
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Nonlinear tidal effects

• Nonlinearities in the Einstein field equations affect the tidal response of a compact 
object. 

• Similarly to electromagnetism, where the nonlinear polarization of an optical medium can 
be studied in nonlinear polarization theory, we can ask a similar question here. 
 
- What is the nonlinear static response of a black hole? 
- Are the symmetries of [Hui, Joyce, Penco, LS and Solomon ’21, ’22] an ‘accident’ of linear response 
theory, or do they admit an extension to nonlinear order? 

• Previous results in this context focused on a particular subset of static and axisymmetric 
perturbations: [Gürlebeck ’15], [Poisson ’20] 

• To date a full answer to the previous questions is still unknown.
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Nonlinear tidal effects

• A clean way of defining tidal deformation of compact objects — which systematically 
accounts for nonlinearities and is not affected by ambiguities due to gauge freedom in 
the theory — is in terms of the point-particle Effective Field Theory (EFT): 
[Goldberger and Rothstein ’04, ’05, ‘06], [Porto ’16], [Blanchet ’13], [Levi ’18], […] 

 

 ,            ,            , 

    where  and, schematically,

S = SEH + Spp + Sint

SEH = M2
Pl

2 ∫ d4x −g R Spp = − M∫ dτ Sint =
∞

∑
ℓ=2

∫ dτ (QμL
E EμL

+ QμL
B BμL)

μL ≡ μ1⋯μℓ
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E
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 ,         , 
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Eμ1⋯μℓ
∼ ∇μ1
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∼ ∇μ1

⋯∇μℓ−2
Bμℓ−1μℓ

Eμν ≡ Cμρνσuρuσ, Bμν ≡ 1
2 εγμ

αβCνδαβuδuγ



Nonlinear tidal Love numbers
•  carry information about the object’s finite-size properties and microscopic physics: 

absorption across the horizon, dissipation, tidal response…  

• To define nonlinear response, we shall proceed as in EM. Focusing e.g. on -sector: 
 

                  , 

 
where  is the -order response function.  

• To leading-order in the derivative expansion (quadrupole), considering non-rotating 
objects and conservative sector, 

 

                      

 

and  boils down to local contact operators: 
 

               .
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Nonlinear tidal Love numbers

•  are the (nonlinear) Love numbers. 

• As in any EFT,  can be either constrained experimentally or determined via matching 
to some explicit UV model. 

• In [2312.05065] and [2409.xxxxx] we computed the quadratic Love numbers of BHs by matching 
with GR: 
 

λ(E)
l,n

λ(E)
l,n

Sint = ∫ dτ [λ(E)
1 EijEij + λ(B)

1 BijBij + λ(E)
2 Ei

jEj
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2 Ei

jBj
kBk

i + higher multipoles]
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Feynman diagrams for the (a) linear and (b) 
nonlinear tidal deformation. 

These vertices scale as .∼ 1/rℓ+1

Sint = ∫ dτ
∞

∑
n=1

[λ(E)
n Eμ1

μ2⋯Eμn+1
μ1 + higher multipoles] ∼ ∑

n,l
∫ dτ λ(E)

l,n ∂lEn+1



Nonlinear equations for static perturbations 
• There are two expansion parameters:  

_  which controls nonlinearities of gravity; 
_ : the amplitude of the external tidal field. 

• At quadratic order, the (static) equations are schematically:      . 
Solving perturbatively as  and imposing regularity at the horizon, one 
can find the nonlinear solution for . 

• . As an example, let’s focus on . 
In the Regge—Wheeler gauge, the most general parametrization of  is: 
 

                      . 

• After some algebra, the Einstein equations boil down to 

 

                                  ,        where . 

κ ≡ 1/MPl
ℰ

𝒟δg ∼ κ δg2

δgμν = δg(1)
μν + κδg(2)

μν
δgμν

δgμν = δgeven
μν + δgodd

μν δgeven
μν

δgeven
μν

δgeven
μν (r, θ, ϕ) = ∑

ℓm
diag [(1 − rs

r ) H0(r), H2(r), K(r), sin2 θ K(r)] Ym
ℓ (θ, ϕ)

H′ ′ 0 + 2r − rs

r(r − rs)
H′ 0 − ℓ(ℓ + 1)r(r − rs) + r2

s

r2(r − rs)2 H0 = SH0
SH0

∼ O(δg2)
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Nonlinear equations for static perturbations 
• Let’s assume that the external tidal field is a quadrupole: asymptotically, .  

• The solution to the linearized equation is , which is notoriously a 
polynomial (i.e., no induced linear static response). 

•  contains a product of 3 spherical harmonics: 

                                , 

which enforces the standard angular momentum selection rule , i.e. 
 and . 

• If     0, 2, 4. At the next order: 

 . 

• Note that the quadratic terms in  are small corrections as long as .

H(ℓ=2,m)
0 ∼ ℰr2

H(ℓ=2,m)
0 = ℰ (r2 − rsr)

SH0
∼ O(δg2)

𝒢ℓ,ℓ1,ℓ2
m,m1,m2

≡ ∫ Ym*
ℓ (θ, ϕ)Ym1

ℓ1
(θ, ϕ)Ym2

ℓ2
(θ, ϕ)sin θdϕdθ

ℓ = ℓ1 ⊗ ℓ2
|ℓ1 − ℓ2 | ≤ ℓ ≤ ℓ1 + ℓ2 m = m1 + m2

ℓ1 = ℓ2 = 2 ⇒ ℓ =

H(ℓ=2,m′ )
0 = ℰ (r2 − rsr) [δm′ 

m − ℰ
4r2s

𝒢2,2,2
m′ ,m,mr(2r + 3rs)]

ℰ ℰr2 ≪ r2
s

Luca Santoni



Matching with point-particle EFT

• The full quadratic static solution 

                                

should then be compared (after a suitable gauge transformation) with 

H(ℓ=2,m′ )
0 = ℰ (r2 − rsr) [δm′ 

m − ℰ
4r2s

𝒢2,2,2
m′ ,m,mr(2r + 3rs)]
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• The result of the matching (in the region ) is: 
 

 . 

rs ≪ r ≪ rs / ℰ

λ1 = λ2 = 0 [Riva, LS, Savic, Vernizzi ’23]

  .∼ 1
rℓ+1



Vanishing of nonlinear Love numbers
• In [2409.xxxxx] we extend the result to the odd sector and to all multipoles.  

 , 

 , 

      where  . 

• We show that, for all ’s, the structure of the eqs in GR is so special that, up to second 
order, the solutions  and  are simple polynomials in . 

• In the EFT, all linear and quadratic Love number couplings vanish: 

 

 .

H′ ′ 0 + 2r − rs

r(r − rs)
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Vanishing of nonlinear Love numbers
• The point-particle EFT can be matched to the full solution without turning on Love 

number couplings. 
Nonlinear corrections to the static solution in GR can be reconstructed from the EFT, to all 
orders in , via just graviton bulk nonlinearities.rs
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Feynman diagrams that reconstruct the 
Schwarzschild metric up to .O(r2

s )

Diagram (a) yields the order-  correction 
to the linear tidal field solution. 

 
  

Diagrams (b), (c) and (d) represent order-  
corrections to the tidal source at second 

order in the external field amplitude.

rs

rs



Vanishing of nonlinear Love numbers

• Following ’t Hooft’s naturalness principle, the vanishing of the Love numbers is a 
naturalness puzzle from an EFT perspective. [Rothstein ’14], [Porto ’16] 

•  can be explained in terms of ladder symmetries: [Hui, Joyce, Penco, LS and Solomon ’21],    
                                                                                                                                                                        [Rai and LS ’24] 

• How about ? 

• The simple form of the source and the vanishing of quadratic Love numbers suggest: 
1. possible resummation/reorganization of perturbation theory; 
2. nonlinear extension of ladder symmetries. 

λ(E)
1 = λ(B)

1 = 0

λ(E)
2 = λ(EB)

2 = 0
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Vanishing of nonlinear Love numbers
• Example of resummation: static and axisymmetric (even) perturbations. 

• Weyl metric in spherical coordinates: 

 . 

• Hidden symmetries emerge from dimensional reduction of GR to two spacetime 
dimensions. 
In [Combaluzier-Szteinsznaider, Hui, LS and Solomon, in preparation] we show that there are nonlinear ladder 
symmetries which imply: 

 

 ,         for all . 

     Parity-even nonlinear Love number couplings vanish to all orders in perturbation theory. 

ds2 = − e2Udt2 + e2k−2U dr2

1 − rs

r

+ r2dθ2 + r(r − rs)sin2 θ e−2Udφ2

Sint ∼ ∑
n≥2

∑
l≥0

∫ dτ λ(E)
l,n ∂lEn

λ(E)
l,n = 0 l, n
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Conclusions



Conclusions and open directions

• Black holes of GR display astonishing simplicity properties also beyond linear 
perturbation theory.  

• In the static regime of the ppEFT, Schwarzschild BHs look effectively like simple point 
particles at all orders. How about Kerr? 

• To see nonlinear (dissipative) effects one needs either nonzero spin, , or . 

• Impact of subdominant effects on waveforms? 
Nonlinear (dissipative) response starts from 5.5PN order for Kerr BHs. 

• Resummation of perturbations and nonlinear symmetries for odd sector? 

• BHs with charge? Higher spacetime dimensions?

a ≠ 0 ω ≠ 0
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