Le projet de super faisceau de neutrinos CERN-MEMPHYS

Antoine Cazes

Laboratori Nazionali di Frascati

Le projet de super faisceau de neutrinos CERN-MEMPHYS

La situation expérimentale. La grandes oscillations -Neutrinos solaires -Neutrinos solaires -Neutrinos solaires -Minos -Les inconnues

Les oscillations de neutrinos

 $\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$ $Si \ \nu = \overline{\nu} \ deux \ phases \\ supplémentaires \ apparaissent \ sans \\ intervenir \ dans \ les \ oscillations \end{pmatrix}$ $\mathcal{P}_{\alpha \to \beta} = \sum_{i} |\mathcal{U}_{\beta i}|^{2} |\mathcal{U}_{\alpha i}^{*}|^{2} + \sum_{i \neq j} \mathcal{U}_{\beta i} \mathcal{U}_{\beta j}^{*} \mathcal{U}_{\alpha i} \mathcal{U}_{\alpha j}^{*} \exp \left(i \frac{\Delta m_{ij}^{2} L}{2E_{\nu}} \right)$

On trouve expérimentalement que : $\Delta m_{12}^2 \ll \Delta m_{23}^2$ et $\theta_{13} \ll 1$

Découplage possible. Oscillation à deux saveurs. Neutrino solaire
 Neutrino atmosphérique

Les neutrinos solaires

KamLAND: Détecte les anti-neutrinos des centrales nucléaires dans 1kt de scintillateur liquide.

SNO : 1kt d'eau lourde

- Intéraction courants neutres $v_x + d \rightarrow p + n + v_x$
- Intéraction courants chargés $v_{e}+d\rightarrow p+p+e^{-1}$
- Intéraction quasi élastique
- $\nu_x + e^- \rightarrow \nu_x + e^-$

Antoine Cazes

ΗŚ

Les neutrinos solaires

L'effet MSW dans le soleil permet de déterminer que $\Delta m_{12}^2 > 0$

$$\Delta m_{12}^2 = 8,2.10^{-5} eV^2; \theta_{12} = 32^{\circ}$$

CPPM - 19 mars 2006

Neutrinos atmosphériques

$$\Delta m^2 = 2, 4.10^{-3} eV^2; \theta_{23} = 45^{\circ}$$

CPPM - 19 mars 2006

Premiers résultats de MINOS

Joint Theoretical Experimental Seminar, Fermilab, 30 mars 2006

Oscillation Results for 0.93E20 p.o.t

 $\Delta m^{2} = 3,05^{+0,60} \text{ (stat)}$ $^{23} \pm 0,12^{0}(55 \text{ (stat)}.10^{-3} \text{ eV}^{2}$

 $sin^2 \theta_{23} = 0,88 + 0,12 (stat) \pm 0,06 (syst)$

CPPM - 19 mars 2006

Les derniers paramètres inconnus

Le dernier angle θ_{13} n'est toujours pas mesuré, de même que la phase de violation de CP δ_{CP}

CHOOZ + v solaire + KamLand

CPPM - 19 mars 2006

Quelque questions...

•Quel est la valeur de ∆m²23 à 10% près?

MINOS

• En quoi oscille le v_{μ} pour Δm_{23}^2 ?

Quelle est la valeur de \(\mathcal{ heta}_{13}\)?
Y a-t-il de la violation de CP dans le domaine leptonique?

CERN – MEMPHYS T2K UNO

CPPM – 19 mars 2006

Le projet de super faisceau de neutrinos CERN-MEMPHYS

La situation expérimentale.
 -Rappel sur les oscillations
 -Neutrinos solaires
 -Neutrinos atmosphériques
 -Minos
 -Les inconnues
 La quête de θ₁₃
 Le projet Européen

• Expérience d'apparition de v_e • Donne accès à θ_{13} et à δ_{CP} .

$$\mathcal{P}_{\nu_{\mu} \to \nu_{e}}^{mat} = \begin{array}{l} 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} & \text{Terme en } \theta_{13} \\ +8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}c_{\delta} - s_{12}s_{13}s_{23})\cos\Delta_{23}\sin\Delta_{31}\sin\Delta_{12} & \text{CP pair} \\ -8J\sin\Delta_{23}\sin\Delta_{31}\sin\Delta_{12} & \text{CP impair} \\ +4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}c_{\delta})\sin^{2}\Delta_{12} & \text{Terme solair} \\ -8c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\Delta_{23}\sin\Delta_{31}\frac{V_{C}L}{2}(1 - 2s_{13}^{2}) & \text{Effet de matière} \end{array}$$

 $P(v_{\mu} \rightarrow v_{e}) = A^{2} + S^{2} - 2AS \sin \delta$ $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = A^{2} + S^{2} + 2AS \sin \delta$ $\mathcal{A}_{CP} = \frac{2AS \sin \delta}{A^{2} + S^{2}}$ $A^{2} + S^{2}$ $A \approx \sqrt{2} \theta_{13}$ $S \approx 0,025 \text{ (LMA)}$ Amplitude faible, mais asymétrie grande!!!

• Bruit de fond : les neutrinos électroniques du faisceau: μ^{\pm} , K^o \rightarrow neutrino électroniques

CPPM - 19 mars 2006

M. Mezzeto

i Fisica Nucleare

CPPM - 19 mars 2006

Le projet de super faisceau de neutrinos CERN-MEMPHYS

La situation expérimentale.
 La quête de θ₁₃
 Le projet Européen

 –Le super faisceau de neutrino
 – βt Principe des faisceaux
 – ME Mascription
 – Le potentiel de physique.

Le Super Proton Linac (SPL)

Buts :

- Augmenter les performances des accélérateurs du CERN (PS, SPS et LHC)
- Source de protons pour les prochaines expériences neutrino et les faisceau d'ion radioactifs.

Faisceau de protons :

- filiforme
- E_k=2.2GeV, 3.5GeV, 4.5GeV,
 6.5GeV et 8GeV

Normalisé à 4MW.

- 1,1.10¹⁶pot/s@2,2GeV
- 0,7.10¹⁶pot/s@3,5GeV

📕 Cible :

- − Cylindre de 30cm de long, Ø 15mm.
- Mercure liquide : Z=80
- 1MW déposé!!!
- FLUKA 2002.4 et MARS

	2,2GeV 3,5GeV	4,5GeV
/π+/s	0,26 0,29	0,32
/_ K ⁺/s	7,7.10 ⁻⁴ 2,5.10 ⁻³	5,2.10 -3

Optimisation : E_k=3,5 GeV

La cible en mercure liquide.

Test à BNL E-951

t = 0ms 0,75ms Faisceau de protons :

- 24GeV
- /2,7/10¹²p/bunch
- t_o≈0,45ms

Jet de mercure :

Ø12mm.

- Vitesse 2,5m/s

4,5ms

13ms

K.Mc Donald, H. Kirk, A. Fabich

La fabrication d'un faisceau de neutrinos

Les pions et les kaons d'un signe sont focalisés à l'aide d'une «corne»

S. Van der Meer, 1961

CPPM – 19 mars 2006

2 cornes
concentriques
300kA et 600kA
Épaisseur des
conducteurs : 3mm

• Impulsion transverse des pions.

• Les particules sortent un grand angle: $\bullet < \theta_{\pi} > = 60^{\circ}@2,2GeV$ $\bullet < \theta_{\pi} > = 55^{\circ}@3,5GeV$ • La corne doit entourer la cible.

CPPM - 19 mars 2006

Dépôt d'énergie dans la corne

Solution en cours d'investigation : réduire l'épaisseur d'aluminium (3mm Al) + des renforts.

CPPM - 19 mars 2006

Optimisation de la corne

Usine à neutrinos

Tunnel de désintégration = solénoïde

Energie

À la sortie de la cible.

—

Optimisation de la forme des cornes

2 optimisations ont été étudiées : • $E_v \sim 260 \text{MeV}$ • $E_v \sim 300 \text{MeV}$ ($p_{\pi} = 600 \text{MeV/c}$) ($p_{\pi} = 800 \text{MeV/c}$) Maximum d'oscillation

Optimisation du tunnel de désintégration

Les particules vont se propager sur quelques dizaines de mètres dans un tunnel où le vide existe.
Le tunnel débute juste après la corne.

- La longueur du tunnel modifie la pureté du faisceau.
- Test :L=10m, 20m, 40m et 60m.
 - 10m→40m
 - ≻ v_µ, v_µ+ 50% à 70%
 - $\succ v_{e}, \overline{v_{e}} + 50\% a 100\%$
 - <mark>-</mark> 40m→60m
 - $\succ v_{\mu}, v_{\mu} + 5\%$
 - $\succ v_{e}, v_{e} + 20\%$

40m à l'air meilleur

CPPM – 19 mars 2006

Le rayon du tunnel modifie l'acceptance

- Test: R=1m, 1.5m et 2m
 - 1m \rightarrow 2m (L=40) > v_{μ} , $\overline{v_{\mu}}$ +50%
 - $\succ v_e^{}, v_e^{-}+50\%$ à 70%

2m à l'air meilleur

Ces résultats vont être vérifiés lors du calcul de la sensibilité à θ_{13} et à δ_{CP}

Flux à 130km

CPPM - 19 mars 2006

Amélioration des résultats

Focalisation mixte

 Accès à δ_{CP}

 Pour équilibré

 20% positive
 80% négative

Valeurs utilisées: $\delta_{CP} = 0$, $\theta_{13} = 0$, $\sin^2 2\theta_{12} = 0.82$, $\theta_{23} = p/4$, $\Delta m_{21}^2 = 8.1/10^{-5}$, $\Delta m_{31}^2 = 2.2/10^{-3}$ 5% precision sur θ_{13} et Δm_{21}^2 Syst. signal & bdf

Campagne, Cazes : Eur Phys J C45:643-657,2006

Gain d'un facteur 4 sur la sensibilitée

INFN Stituto Nazionale di Fisica Nucleare

Le projet de super faisceau de neutrinos CERN-MEMPHYS

La situation expérimentale. La quête de θ_{13} Le projet Européen -Le super faisceau de neutrino Principe des faisceaux description optimisation – βbeam -MEMPHYS -Le potentiel de physique.

В beam

M.Benedikt CERN-ISS22/9/2005

Idée nouvelle : capture d'électrons par le ¹⁹Ne

CPPM - 19 mars 2006

Le projet de super faisceau de neutrinos CERN-MEMPHYS

La situation expérimentale.
 La quête de θ₁₃
 Le projet Européen

 –Le super faisceau de neutrino
 –βbeam
 –MEMPHYS
 –Le potentiel de physique.

MEgaton Mass PHYSics (MEMPHYS)

CPPM - 19 mars 2006

Le site

Laboratoire Souterrain de Modane : - Très profond (4800mew) - Facile d'accès (TGV, autoroute, aéroports de Genève/Lyon/Turin) - Support des autorités locales

Le laboratoire

CPPM – 19 mars 2006

Les Cerenkov à eau

Cerenkov à eau

- Faible coût / tonne
 - Principalement les PM et l'électronique.
- Limite :
 - atténuation de la lumière (80m à λ =400nm)
 - Pression sur les PMs : hauteur < 80m</p>
- Détection : Mesure des anneaux Cerenkov.
 - Les particule neutre et sous le seuil Cerenkov sont perdues
 - Seul les événements avec moins de 5 anneaux sont analysables
 - La netteté des anneaux permet de séparer les (e, γ) des (μ , π)
 - Mesure de l'énergie par le nombre de photo-électrons. (le seuil dépend de la couverture des photo-cathodes et de la pureté de l'eau)

Les détecteurs Cerenkov sont très appropriés pour mesurer les neutrinos jusqu'à quelques GeV Antoine Cazes

Photo détecteurs

Choix PM 12''

- 2 fois plus nombreux
- Couverture de 30%
- Même nombre de p.e.
- Meilleur résolution en temps et pixel plus précis.
- Moins cher.

Mais

- Doublement des voies d'électronique...
- R&D électronique :
 IPNO
 LAL
 LAPP

	Hamamatru	Photonis
Ø	20''	/12''
Aire	/1660 cm ²	615 cm ²
Eff. Q	20%	24%
Coll. eff	60%	70%
Prix	2500€	800€

But : seuil de 5MeV.

Le projet de super faisceau de neutrinos CERN-MEMPHYS

La situation expérimentale. La quête de θ_{13} Le projet Européen -Le super faisceau de neutrino - βbeam -MEMPHYS -Le potentiel de physique. Physique hors accélérateur Oscillation de neutrinos

Physique Hors accélérateur

Désintégration du proton

- $-p \rightarrow e^+ \pi^0$
 - Signature : 3 anneaux électromagnétique
 Sensibilité : 10³⁵ ans à 90%CL pour 5Mt.year
- p→⊽K+

Signature : produits de désintégration du Kaon
 Sensibilité : 2.10³⁴ ans à 90%CL pour 5Mt.year

Physique Hors accélérateur

Super Novae

- Effondrement
 - I SN à 10kpc ~ 2.10⁵ evts
 Possible trigger pour télescope : 2 neutrinos dans un intervalle de temps de ~10s → jusqu'à 10Mpc
- hiérarchie de masse des neutrinos
 - Facteur $\tau_{E} = \langle E_{v} \rangle / \langle E_{v} \rangle$ à 1%
 - Possible de connaître la hiérarchie si sinθ₁₃>10⁻³
- Neutrinos relics
 - Signal observable à 2σ après 10 ans
 - Possibilité d'ajouter du Gd pour augmenter l'efficacité

Supernova detection with MEMPHYS

FIG. 6: Number of events expected in 0.4 Mton detector (left y-axis) or in a SK-like detector (right y-axis) as a function of the supernova distance, for various interaction channels. See the text for details.

Physique des neutrinos

I ∆m²

- A^{31} A Minos : Disparition des v_{μ} du SPL

– 5 ans (v)

CPPM - 19 mars 2006

	True values	T2K-I	SPL	T2HK
$\frac{\Delta m^2_{31}}{\sin^2\theta_{23}}$	$\begin{array}{c} 2.2 \cdot 10^{-3} \ \mathrm{eV^2} \\ 0.5 \end{array}$	4.7% 20%	3.9% 22%	$1.1\% \\ 6\%$
$\Delta m_{31}^2 \\ \sin^2 \theta_{23}$	$\begin{array}{c} 2.6 \cdot 10^{-3} \ \mathrm{eV^2} \\ 0.37 \end{array}$	4.4% 8.9%	$3.0\% \\ 4.7\%$	$0.7\%\ 0.8\%$

Campagne et al. hep-ph/0603172

–La combinaison avec les neutrinos atmosphériques permet de connaître le signe de Δm^2 à 2σ si sin²2θ₁₃ = 0.02 - 0.03 (combinaison SPL-βbeam)

Physique des neutrinos

 θ_{13}

 Potentiel de découverte à 3σ

 - sin²2θ₁₃ = 4.10⁻⁴ accessible pour 45% des valeurs de δ_{CP} avec la combinaison du SPL et du βBeam
 Valeurs utilisées: sin²θ₁₂=0.3,sin²θ₂₃=0.5, Δm²₂₁=7.9 10⁻⁵, Δm²₃₁=2.2 10⁻³
 4% precision sur Δm²₂₁ et 10% pour les autres

CPPM - 19 mars 2006

Campagne et al. hep-ph/0603172

Physique des neutrinos

- 10 de prise de données
- Potentiel de découverte à 3σ
- La violation de CP peut être observé si $sin^2 2\theta_{13} > 10^{-2}$ dans ~75% des valeurs de δ_{CP}

Valeurs utilisées: $\sin^2\theta_{12} = 0.3$, $\sin^2\theta_{23} = 0.5$, $\Delta m^2_{21} = 7.9 \ 10^{-5}$, $\Delta m^2_{31} = 2.2 \ 10^{-3}$ **4%** precision sur Δm^2_{21} et 10% pour les autres CPPM – 19 mars 2006 Antoine Cazes

Campagne et al. hep-ph/0603172

Synergie entre le SPL et le Bbeam

Signal de l'un = bruit de fond de l'autre :

- Etude des erreurs systématiques.

Si l'on croit en CPT : – P_{νµ→νe} = P_{νe→νµ} – P_{νe→νµ} = P_{νµ→νe}
Si on utilise le *SPL* et le βbeam, on n'a plus besoin de tourner en anti-neutrinos...
On fait mieux en 5 ans qu'avec un seul faisceau en 10 ans.

Campagne et al. hep-ph/0603172

Le domaine des neutrinos atmosphériques occupe le futur proche

MINOS est en cours de prise de données
 OPERA démarrera à l'été 2006

- Le futur va explorer les derniers paramètres : θ_{13}
 - et δ_{CP}
 - Un facteur 4 a été gagné en sensibilité pour le projet SPL-Fréjus

La combinaison avec un βbeam permet d'atteindre la sensibilité de sin²2 θ_{13} > 4 10⁻⁴

si $\sin^2 2\theta_{13} > 10^{-2}$, ~75% des valeurs de δ_{CP} peuvent etre découverte

Avec les deux faisceaux, on peut diviser le temps de prise de données par 2.

Le super faisceau de neutrinos

CPPM - 19 mars 2006

Antoine Cazes

li Fisica Nucleare

di Fisica Nucleare

Le super faisceau de neutrinos

CPPM - 19 mars 2006

Antoine Cazes

Fisica Nuclean